Articles | Volume 16, issue 18
https://doi.org/10.5194/amt-16-4229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation
Angela Mynard
CORRESPONDING AUTHOR
Met Office, Exeter, Devon, EX3 1PB, UK
Joss Kent
Met Office, Exeter, Devon, EX3 1PB, UK
Eleanor R. Smith
Met Office, Exeter, Devon, EX3 1PB, UK
Andy Wilson
Met Office, Exeter, Devon, EX3 1PB, UK
Kirsty Wivell
Met Office, Exeter, Devon, EX3 1PB, UK
Noel Nelson
Met Office, Exeter, Devon, EX3 1PB, UK
Matthew Hort
Met Office, Exeter, Devon, EX3 1PB, UK
James Bowles
Met Office, Exeter, Devon, EX3 1PB, UK
David Tiddeman
Met Office, Exeter, Devon, EX3 1PB, UK
Justin M. Langridge
Met Office, Exeter, Devon, EX3 1PB, UK
Benjamin Drummond
Met Office, Exeter, Devon, EX3 1PB, UK
Steven J. Abel
Met Office, Exeter, Devon, EX3 1PB, UK
Related authors
No articles found.
Huihui Wu, Fanny Peers, Jonathan W. Taylor, Chenjie Yu, Steven J. Abel, Paul A. Barrett, Jamie Trembath, Keith Bower, Jim M. Haywood, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-3975, https://doi.org/10.5194/egusphere-2024-3975, 2025
Short summary
Short summary
This study investigates the transport history of African Biomass-Burning aerosols (BBAs) over the southeast Atlantic (SEA), and the relationship between transported BBAs and clouds around Ascension Island using in-situ airborne measurements. The work provides critical simplified parameterizations of aerosol-cloud interaction for improving the evaluation of radiative forcing over the SEA. It also identifies key entrainment regions for understanding the vertical transport process of African BBAs.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
The Cryosphere, 17, 4325–4341, https://doi.org/10.5194/tc-17-4325-2023, https://doi.org/10.5194/tc-17-4325-2023, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide snow profile input to emissivity simulations.
Andrew R. Jones, Susan J. Leadbetter, and Matthew C. Hort
Atmos. Chem. Phys., 23, 12477–12503, https://doi.org/10.5194/acp-23-12477-2023, https://doi.org/10.5194/acp-23-12477-2023, 2023
Short summary
Short summary
The paper explores spread and calibration properties of ensemble atmospheric dispersion forecasts for hypothetical release events. Real-time forecasts from an ensemble weather prediction system were used to generate an ensemble of dispersion predictions and assessed against simulations produced using analysis meteorology. Results demonstrate good performance overall but highlight more skilful predictions for material released in the upper air compared with releases near the surface.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Susan J. Leadbetter, Andrew R. Jones, and Matthew C. Hort
Atmos. Chem. Phys., 22, 577–596, https://doi.org/10.5194/acp-22-577-2022, https://doi.org/10.5194/acp-22-577-2022, 2022
Short summary
Short summary
In this study we look at the ability of meteorological ensembles (multiple realisations of the meteorological data) to provide information about the uncertainty in the dispersion model predictions. Statistical measures are used to evaluate the model predictions, and these show that on average the ensemble predictions outperform the non-ensemble predictions.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Huihui Wu, Jonathan W. Taylor, Justin M. Langridge, Chenjie Yu, James D. Allan, Kate Szpek, Michael I. Cotterell, Paul I. Williams, Michael Flynn, Patrick Barker, Cathryn Fox, Grant Allen, James Lee, and Hugh Coe
Atmos. Chem. Phys., 21, 9417–9440, https://doi.org/10.5194/acp-21-9417-2021, https://doi.org/10.5194/acp-21-9417-2021, 2021
Short summary
Short summary
Seasonal biomass burning over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. We conducted in situ airborne measurements to investigate the evolution of smoke aerosol properties in this region. We observed absorption enhancement for both black carbon and brown carbon after emission, which provides new field results and constraints on aerosol parameterizations for future climate models.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Huihui Wu, Jonathan W. Taylor, Kate Szpek, Justin M. Langridge, Paul I. Williams, Michael Flynn, James D. Allan, Steven J. Abel, Joseph Pitt, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 12697–12719, https://doi.org/10.5194/acp-20-12697-2020, https://doi.org/10.5194/acp-20-12697-2020, 2020
Short summary
Short summary
Airborne measurements of highly aged biomass burning aerosols (BBAs) over the remote southeast Atlantic provide unique aerosol parameters for climate models. Our observations demonstrate the persistence of strongly absorbing BBAs across wide regions of the South Atlantic. We also found significant vertical variation in the single-scattering albedo of these BBAs, as a function of relative chemical composition and size. Aerosol properties in the marine BL are suggested to be separated from the FT.
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10997–11024, https://doi.org/10.5194/acp-20-10997-2020, https://doi.org/10.5194/acp-20-10997-2020, 2020
Short summary
Short summary
The Met Office's Unified Model is widely used both for weather forecasting and climate prediction. We present the first version of the model in which both aerosol and cloud particle mass and number concentrations are allowed to evolve separately and independently, which is important for studying how aerosols affect weather and climate. We test the model against aircraft observations near Ascension Island in the Atlantic, focusing on how aerosols can "activate" to become cloud droplets.
Cited articles
Air Quality Expert Group: Fine Particulate Matter (PM2.5) in the United
Kingdom, Department for Environment Food and Rural Affairs (DEFRA), https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1212141150_AQEG_Fine_Particulate_Matter_in_the_UK.pdf (last access: 15 February 2021), 2012.
Air Quality Expert Group: Estimation of changes in air pollution emissions,
concentrations and exposure during the COVID-19 outbreak in the UK, UK Air
Inf. Resour., 1–57, https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2007010844_Estimation_of_Changes_in_Air_Pollution_During_COVID-19_outbreak_in_the_UK.pdf (last access: 6 January 2021), 2020.
Bates, K. H. and Jacob, D. J.: An Expanded Definition of the Odd Oxygen
Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and
Stratospheric In fl uence Geophysical Research Letters, Geophys. Res. Lett.,
47, e2019GL084486, https://doi.org/10.1029/2019GL084486, 2019.
Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J.-P.: Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique, Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, 2014.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous
particles: An investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Anderson, T. L., and Campbell, D.: Calibration and
Intercomparison of Filter-Based Measurements of Visible Light Absorption by
Aerosols, Aerosol Sci. Tech., 30, 582–600,
https://doi.org/10.1080/027868299304435, 1999.
Brechtel Manufacturing Inc: Model 1200 Isokinetic Aerosol Inlet System
Manual ver. 8.0, manual, 2011.
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, 2020.
Dassios, K. G. and Pandis, S. N.: The mass accommodation coefficient of
ammonium nitrate aerosol, Atmos. Environ., 33, 2993–3003,
https://doi.org/10.1016/S1352-2310(99)00079-5, 1999.
Davies, N. W., Fox, C., Szpek, K., Cotterell, M. I., Taylor, J. W., Allan, J. D., Williams, P. I., Trembath, J., Haywood, J. M., and Langridge, J. M.: Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy, Atmos. Meas. Tech., 12, 3417–3434, https://doi.org/10.5194/amt-12-3417-2019, 2019.
DEFRA: Clean air strategy 2019, DEFRA, https://www.gov.uk/government/publications/clean-air-strategy-2019 (last access: 12 June 2020), 2019.
Denby, B., Cassiani, M., De Smet, P., De Leeuw, F., and Horálek, J.:
Sub-grid variability and its impact on European wide air quality exposure
assessment, Atmos. Environ., 45, 4220–4229,
https://doi.org/10.1016/j.atmosenv.2011.05.007, 2011.
Dewline: DewLine™, Dewline, https://twobtech.com/dewline.html, last access: 15 May 2020.
Ecotech: Aurora3000 Integrating Nephelometer with backscatter, user manual
v1.3, Ecotech, 2009.
El-Harbawi, M.: Air quality modelling, simulation, and computational
methods: a review, Environ. Rev., 21, 149–179, https://doi.org/10.1139/er-2012-0056, 2013.
Environment Agency: Automatic Urban and Rural Network (AURN) LSO Manual, Version 1.2, Environment Agency, https://uk-air.defra.gov.uk/assets/documents/reports/empire/lsoman/lsoman.html (last access: 13 September 2023), 2022.
Fleming, R. J.: The use of commercial aircraft as platforms for environmental measurements, B. Amer. Meteorol. Soc., 77, 2229–2242, 1996.
Frie, A. L. and Bahreini, R.: Refractive index confidence explorer (RICE): A
tool for propagating uncertainties through complex refractive index
retrievals from aerosol particles, Aerosol Sci. Tech., 55, 703–717,
https://doi.org/10.1080/02786826.2021.1895428, 2021.
Fuchs, N. A. and Sutugin, A. G.: High-dispersed aerosols, in: International Reviews in Aerosol Physics and Chemistry, Topics in Current Aerosol Research,
edited by: Hidy, G. M. and Brock, J. R., Pergamon, https://doi.org/10.1016/B978-0-08-016674-2.50006-6, 1971.
Gao, R. S., Telg, H., McLaughlin, R. J., Ciciora, S. J., Watts, L. A.,
Richardson, M. S., Schwarz, J. P., Perring, A. E., Thornberry, T. D.,
Rollins, A. W., Markovic, M. Z., Bates, T. S., Johnson, J. E., and Fahey, D.
W.: A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements, Aerosol Sci. Tech., 50, 88–99,
https://doi.org/10.1080/02786826.2015.1131809, 2016.
Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., and Carslaw, D. C.: COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas, Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021, 2021.
Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020, 2020.
Harrison, R. M., Jones, A. M., and Lawrence, R. G.: Major component
composition of PM10 and PM2.5 from roadside and urban background sites, Atmos. Environ., 38, 4531–4538, https://doi.org/10.1016/j.atmosenv.2004.05.022,
2004.
Haywood, J.: Prediction of visibility and aerosol within the operational Met Office Unified Model.II: Validation of model performance using observational data, Q. J. Roy. Meteor. Soc., 134, 1817–1832, https://doi.org/10.1002/qj.275, 2008.
Hinds, W. C.: Aerosol technology: properties, behavior, and measurement of airborne particles, John Wiley & Sons, ISBN 978-0-471-19410-1, 1999.
Hoon Jung, C., Jung Shin, H., Yi Lee, J., Pyo Kim, Y., Pitari, G., and Curci,
G.: Sensitivity and Contribution of Organic Aerosols to Aerosol Optical
Properties Based on Their Refractive Index and Hygroscopicity, Atmosphere, 7, 65, https://doi.org/10.3390/atmos7050065, 2016.
Kebabian, P. L., Herndon, S. C., and Freedman, A.: Detection of nitrogen
dioxide by cavity attenuated phase shift spectroscopy, Anal. Chem., 77,
724–728, https://doi.org/10.1021/ac048715y, 2005.
Lafon, S., Sokolik, I. N., Rajot, J. L., Caquincau, S., and Gaudichet, A.:
Characterization of iron oxides in mineral dust aerosols: Implications for
light absorption, J. Geophys. Res.-Atmos., 111, 1–19,
https://doi.org/10.1029/2005JD007016, 2006.
Langridge, J. M., Ball, S. M., Shillings, A. J. L., and Jones, R. L.: A
broadband absorption spectrometer using light emitting diodes for
ultrasensitive, in situ trace gas detection, Rev. Sci. Instrum., 79, 121310,
https://doi.org/10.1063/1.3046282, 2008.
Langridge, J. M., Lack, D., Brock, C. A., Bahreini, R., Middlebrook, A. M.,
Neuman, J. A., Nowak, J. B., Perring, A. E., Schwarz, J. P., Spackman, J.
R., Holloway, J. S., Pollack, I. B., Ryerson, T. B., Roberts, J. M.,
Warneke, C., De Gouw, J. A., Trainer, M. K., and Murphy, D. M.: Evolution of
aerosol properties impacting visibility and direct climate forcing in an
ammonia-rich urban environment, J. Geophys. Res.-Atmos., 117, 1–17,
https://doi.org/10.1029/2011JD017116, 2012.
Liu, X., Chance, K., Sioris, C. E., Spurr, R. J. D., Kurosu, T. P., Martin,
R. V., and Newchurch, M. J.: Ozone profile and tropospheric ozone retrievals
from the Global Ozone Monitoring Experiment: Algorithm description and
validation, J. Geophys. Res.-Atmos., 110, 1–19,
https://doi.org/10.1029/2005JD006240, 2005.
Liu, Y. and Daum, P. H.: The effect of refractive index on size
distributions and light scattering coefficients derived from optical
particle counters, J. Aerosol Sci., 31, 945–957,
https://doi.org/10.1016/S0021-8502(99)00573-X, 2000.
Lock, A. P., Martin, G. M., Bush, M. R., Brown, A. R., and Smith, R. N. B.: A
new boundary layer mixing scheme part I: Tests in climate and mesoscale
models, Mon. Weather Rev., 128, 3200–3217,
https://doi.org/10.1175/1520-0493(2000)128<3200:ANBLMS>2.0.CO;2, 2000.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.:
Environmental and Health Impacts of Air Pollution: A Review, Front. Publ.
Heal., 8, 1–13, https://doi.org/10.3389/fpubh.2020.00014, 2020.
McMeeking, G. R., Morgan, W. T., Flynn, M., Highwood, E. J., Turnbull, K., Haywood, J., and Coe, H.: Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom, Atmos. Chem. Phys., 11, 9037–9052, https://doi.org/10.5194/acp-11-9037-2011, 2011.
McMeeking, G. R., Bart, M., Chazette, P., Haywood, J. M., Hopkins, J. R., McQuaid, J. B., Morgan, W. T., Raut, J.-C., Ryder, C. L., Savage, N., Turnbull, K., and Coe, H.: Airborne measurements of trace gases and aerosols over the London metropolitan region, Atmos. Chem. Phys., 12, 5163–5187, https://doi.org/10.5194/acp-12-5163-2012, 2012.
Met Office and Mynard, A.: MOASA Clean Air Project: airborne atmospheric measurements collection, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/0aa1ec0cf18e4065bdae8ae39260fe7d, 2023.
Molina, M. J. and Molina, L. T.: Megacities and atmospheric pollution, J.
Air Waste Manag. Assoc., 54, 644–680, https://doi.org/10.1080/10473289.2004.10470936, 2004.
Morgan, W. T., Allan, J. D., Bower, K. N., Esselborn, M., Harris, B., Henzing, J. S., Highwood, E. J., Kiendler-Scharr, A., McMeeking, G. R., Mensah, A. A., Northway, M. J., Osborne, S., Williams, P. I., Krejci, R., and Coe, H.: Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe, Atmos. Chem. Phys., 10, 8151–8171, https://doi.org/10.5194/acp-10-8151-2010, 2010.
Müller, T., Laborde, M., Kassell, G., and Wiedensohler, A.: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer, Atmos. Meas. Tech., 4, 1291–1303, https://doi.org/10.5194/amt-4-1291-2011, 2011.
Müller, T., Virkkula, A., and Ogren, J. A.: Constrained two-stream algorithm for calculating aerosol light absorption coefficient from the Particle Soot Absorption Photometer, Atmos. Meas. Tech., 7, 4049–4070, https://doi.org/10.5194/amt-7-4049-2014, 2014.
National Center for Biotechnology Information: PubChem Annotation Record for CALCIUM SULFATE, Hazardous Substances Data Bank (HSDB), https://pubchem.ncbi.nlm.nih.gov/compound/24497 (last access: 15 September 2023), 2023.
National Meteorological Library: Daily weather summary,
September 2020, National Meteorological Library and Archive, https://digital.nmla.metoffice.gov.uk/IO_00cfff7c-7099-4583-ac85-a9adca963bb5/ (last access: 21 October 2021), 2020.
Neal, L. S., Agnew, P., Moseley, S., Ordóñez, C., Savage, N. H., and
Tilbee, M.: Application of a statistical post-processing technique to a
gridded, operational, air quality forecast, Atmos. Environ., 98, 385–393,
https://doi.org/10.1016/j.atmosenv.2014.09.004, 2014.
Neal, L. S., Dalvi, M., Folberth, G., McInnes, R. N., Agnew, P., O'Connor, F. M., Savage, N. H., and Tilbee, M.: A description and evaluation of an air quality model nested within global and regional composition-climate models using MetUM, Geosci. Model Dev., 10, 3941–3962, https://doi.org/10.5194/gmd-10-3941-2017, 2017.
NOAA: CAMEO Chemicals, CAMEO Chem. version 2.7.1 rev 3, NOAA, https://cameochemicals.noaa.gov/chemical/25006, last access: 23 November 2021.
Nowak, J. B., Neuman, J. A., Bahreini, R., Brock, C. A., Middlebrook, A. M.,
Wollny, A. G., Holloway, J. S., Peischl, J., Ryerson, T. B., and Fehsenfeld,
F. C.: Airborne observations of ammonia and ammonium nitrate formation over
Houston, Texas, J. Geophys. Res.-Atmos., 115, 1–12,
https://doi.org/10.1029/2010JD014195, 2010.
Ogren, J. A., Wendell, J., Andrews, E., and Sheridan, P. J.: Continuous light absorption photometer for long-term studies, Atmos. Meas. Tech., 10, 4805–4818, https://doi.org/10.5194/amt-10-4805-2017, 2017.
OSCA: http://www.ukcleanair.org (last access: 1 December 2021), 2020.
Peers, F., Francis, P., Fox, C., Abel, S. J., Szpek, K., Cotterell, M. I., Davies, N. W., Langridge, J. M., Meyer, K. G., Platnick, S. E., and Haywood, J. M.: Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 1: Method description and sensitivity, Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, 2019.
Perim de Faria, J., Bundke, U., Freedman, A., Onasch, T. B., and Petzold, A.: Laboratory validation of a compact single-scattering albedo (SSA) monitor, Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, 2021.
Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M.,
Gallagher, M., Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D.,
Marshall, J., NéDélec, P., Smit, H. G. J., Friess, U., Flaud, J. M.,
Wahner, A., Cammas, J. P., Volz-Thomas, A., Thomas, K., Rohs, S., Bundke,
U., Neis, P., Berkes, F., Houben, N., Berg, M., Tappertzhofen, M., Blomel,
T., Pätz, W., Filges, A., Boschetti, F., Verma, S., Baum, S., Athier,
G., Cousin, J. M., Sauvage, B., Blot, R., Clark, H., Gaudel, A., Gressent,
A., Auby, A., Fontaine, A., Gautron, B., Bennouna, Y., Petetin, H., Karcher,
F., Abonnel, C., Dandin, P., Beswick, K., Wang, K. Y., Rauthe-Schöch,
A., Baker, A. K., Riede, H., Gromov, S., Zimmermann, P., Thorenz, U.,
Scharffe, D., Koeppel, C., Slemr, F., Schuck, T. J., Umezawa, T., Ditas, J.,
Cheng, Y., Schneider, J., Williams, J., Neumaier, M., Christner, E.,
Fischbeck, G., Safadi, L., Petrelli, A., Gehrlein, T., Heger, S., Dyroff,
C., Weber, S., Assmann, D., Rubach, F., Weigelt, A., Stratmann, G., Stock,
P., Penth, L., Walter, D., Heue, K. P., Allouche, Y., Marizy, C., Hermira,
J., Bringtown, S., Saueressig, G., Seidel, N., Huf, M., Waibel, A., Franke,
H., Klaus, C., Stosius, R., Baumgardner, D., Braathen, G., Paulin, M., and
Garnett, N.: Global-scale atmosphere monitoring by in-service aircraft –
current achievements and future prospects of the European Research
Infrastructure IAGOS, Tellus B, 6, 1–24, https://doi.org/10.3402/tellusb.v67.28452, 2015.
Qian, Y., Gustafson Jr., W. I., and Fast, J. D.: An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling, Atmos. Chem. Phys., 10, 6917–6946, https://doi.org/10.5194/acp-10-6917-2010, 2010.
Rosenberg, P. D., Dean, A. R., Williams, P. I., Dorsey, J. R., Minikin, A., Pickering, M. A., and Petzold, A.: Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign, Atmos. Meas. Tech., 5, 1147–1163, https://doi.org/10.5194/amt-5-1147-2012, 2012.
Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., and Dalvi, M.: Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation, Geosci. Model Dev., 6, 353–372, https://doi.org/10.5194/gmd-6-353-2013, 2013.
Solazzo, E., Bianconi, R., Pirovano, G., Moran, M. D., Vautard, R., Hogrefe, C., Appel, K. W., Matthias, V., Grossi, P., Bessagnet, B., Brandt, J., Chemel, C., Christensen, J. H., Forkel, R., Francis, X. V., Hansen, A. B., McKeen, S., Nopmongcol, U., Prank, M., Sartelet, K. N., Segers, A., Silver, J. D., Yarwood, G., Werhahn, J., Zhang, J., Rao, S. T., and Galmarini, S.: Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants, Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, 2013.
Tang, W., Edwards, D. P., Emmons, L. K., Worden, H. M., Judd, L. M., Lamsal, L. N., Al-Saadi, J. A., Janz, S. J., Crawford, J. H., Deeter, M. N., Pfister, G., Buchholz, R. R., Gaubert, B., and Nowlan, C. R.: Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements, Atmos. Meas. Tech., 14, 4639–4655, https://doi.org/10.5194/amt-14-4639-2021, 2021.
Thermo Scientific: Thermo Scientific Model 43 i Sulfur Dioxide Analyzer –
pulsed fluorescence gas analyzer, Thermo Fisher Scientific Inc., https://assets.thermofisher.com/TFS-Assets%2FLSG%2FSpecification-Sheets%2FEPM-43i-Datasheet.pdf,
last access: 24 May 2023.
UKRI: Integrated Research Observation System for Clean Air (OSCA), UK Research and Innovation, https://gtr.ukri.org/projects?ref=NE%2FT001984%2F1 (last access: 2 November 2021), 2021.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Virkkula, A.: Calibration of the 3-wavelength particle soot absorption
photometer (3λ PSAP), Aerosol Sci. Tech., 44, 706–712, https://doi.org/10.1080/02786826.2010.482110, 2010.
von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479–494, https://doi.org/10.5194/amt-2-479-2009, 2009.
Williams, M. L., Beevers, S., Kitwiroon, N., Dajnak, D., Walton, H., Lott,
M. C., Pye, S., Fecht, D., Toledano, M. B., and Holland, M.: Public health
air pollution impacts of pathway options to meet the 2050 UK Climate Change
Act target: a modelling study, Publ. Heal. Res., 6, 1–124,
https://doi.org/10.3310/phr06070, 2018.
Wilson, K. L. and Birks, J. W.: Mechanism and elimination of a water vapor
interference in the measurement of ozone by UV absorbance, Environ. Sci.
Technol., 40, 6361–6367, https://doi.org/10.1021/es052590c, 2006.
World Health Organization: Evolution of WHO air quality guidelines: past, present and future, WHO Regional Office for Europe, Copenhagen, Denmark, ISBN 9789289052306, 2017.
Wyche, K. P., Nichols, M., Parfitt, H., Beckett, P., Gregg, D. J.,
Smallbone, K. L., and Monks, P. S.: Changes in ambient air quality and
atmospheric composition and reactivity in the South East of the UK as a
result of the COVID-19 lockdown, Sci. Total Environ., 755, 142526,
https://doi.org/10.1016/j.scitotenv.2020.142526, 2021.
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Air quality models are key in understanding complex air pollution processes and assist in...