Articles | Volume 16, issue 19
https://doi.org/10.5194/amt-16-4357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India
Mark Joseph Campmier
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
Jonathan Gingrich
Department of Engineering, Dordt University, Sioux Center, IA 51250, USA
Saumya Singh
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
Nisar Baig
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
Shahzad Gani
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00100, Finland
Adithi Upadhya
ILK Labs, Benson Town, Bengaluru 560046, India
Pratyush Agrawal
Center for Study of Science, Technology and Policy, Bengaluru 560094, India
Meenakshi Kushwaha
ILK Labs, Benson Town, Bengaluru 560046, India
Harsh Raj Mishra
Indo-Gangetic Plains Centre for Air Research and Education (IGP-CARE), Hamirpur 210301, India
Ajay Pillarisetti
School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
Sreekanth Vakacherla
Center for Study of Science, Technology and Policy, Bengaluru 560094, India
Ravi Kant Pathak
Indo-Gangetic Plains Centre for Air Research and Education (IGP-CARE), Hamirpur 210301, India
Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
Joshua S. Apte
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
Related authors
No articles found.
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakes K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-18, https://doi.org/10.5194/ar-2025-18, 2025
Preprint under review for AR
Short summary
Short summary
We trained machine learning models to estimate the number of aerosol particles large enough to form clouds and generated daily estimates for the entire globe. The models performed well in many continental regions but struggled in remote and marine areas. Still, this approach offers a way to quantify these particles in areas that lack direct measurements, helping us understand their influence on clouds and climate on a global scale.
Erin F. Katz, Caleb M. Arata, Eva Y. Pfannerstill, Robert J. Weber, Darian Ng, Michael J. Milazzo, Haley Byrne, Hui Wang, Alex B. Guenther, Camilo Rey-Sanchez, Joshua Apte, Dennis D. Baldocchi, and Allen H. Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2025-2682, https://doi.org/10.5194/egusphere-2025-2682, 2025
Short summary
Short summary
Terpenoids are organic gases that can originate from natural and human-caused sources, and their fast reactions in the atmosphere can cause air pollution. Emissions of organic gases in an urban environment were measured. For some terpenoids, human-caused sources were responsible for about a quarter of the emissions, while others were likely to be entirely from vegetation. The terpenoids contributed substantially to the potential to form secondary pollutants.
Shahzad Gani, Louise Arnal, Lucy Beattie, John Hillier, Sam Illingworth, Tiziana Lanza, Solmaz Mohadjer, Karoliina Pulkkinen, Heidi Roop, Iain Stewart, Kirsten von Elverfeldt, and Stephanie Zihms
Geosci. Commun., 7, 251–266, https://doi.org/10.5194/gc-7-251-2024, https://doi.org/10.5194/gc-7-251-2024, 2024
Short summary
Short summary
Science communication in geosciences has societal and scientific value but often operates in “shadowlands”. This editorial highlights these issues and proposes potential solutions. Our objective is to create a transparent and responsible geoscience communication landscape, fostering scientific progress, the well-being of scientists, and societal benefits.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022, https://doi.org/10.5194/acp-22-13631-2022, 2022
Short summary
Short summary
Here we determine the sources of primary organic aerosol in Delhi, India, in two different seasons. In winter, the main sources are traffic and biomass burning; in the summer, the main sources are traffic and cooking. We obtain this result by conducting source apportionment resolved by time of day, using data from an aerosol chemical speciation monitor. Results from this work can be used to better design policies that target sources of organic aerosol.
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Meas. Tech., 15, 6051–6074, https://doi.org/10.5194/amt-15-6051-2022, https://doi.org/10.5194/amt-15-6051-2022, 2022
Short summary
Short summary
We present a new method to conduct source apportionment resolved by time of day using the underlying approach of positive matrix factorization. We report results for four example time periods in two seasons (winter and monsoon 2017) in Delhi, India. Compared to the traditional approach, we extract a larger number of factors that represent the expected sources of primary organic aerosol. This method can capture diurnal time series patterns of sources at low computational cost.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Ying Zhou, Simo Hakala, Chao Yan, Yang Gao, Xiaohong Yao, Biwu Chu, Tommy Chan, Juha Kangasluoma, Shahzad Gani, Jenni Kontkanen, Pauli Paasonen, Yongchun Liu, Tuukka Petäjä, Markku Kulmala, and Lubna Dada
Atmos. Chem. Phys., 21, 17885–17906, https://doi.org/10.5194/acp-21-17885-2021, https://doi.org/10.5194/acp-21-17885-2021, 2021
Short summary
Short summary
We characterized the connection between new particle formation (NPF) events in terms of frequency, intensity and growth at a near-highway location in central Beijing and at a background mountain site 80 km away. Due to the substantial contribution of NPF to the global aerosol budget, identifying the conditions that promote the occurrence of regional NPF events could help understand their contribution on a large scale and would improve their implementation in global models.
Shahzad Gani, Lukas Kohl, Rima Baalbaki, Federico Bianchi, Taina M. Ruuskanen, Olli-Pekka Siira, Pauli Paasonen, and Hanna Vehkamäki
Geosci. Commun., 4, 507–516, https://doi.org/10.5194/gc-4-507-2021, https://doi.org/10.5194/gc-4-507-2021, 2021
Short summary
Short summary
In this article, we present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Our practical approach promotes fair authorship practices and, by focusing on clear, transparent, and timely communication, helps avoid late-stage authorship conflict.
Cited articles
Apte, J. S. and Pant, P.: Toward cleaner air for a billion Indians,
P. Natl. Acad. Sci. USA, 116, 10614–10616,
https://doi.org/10.1073/pnas.1905458116, 2019. a, b
Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., and Pope, C. A.: Ambient
PM2.5 Reduces Global and Regional Life Expectancy, Environ.
Sci. Tech. Let., 5, 546–551,
https://doi.org/10.1021/acs.estlett.8b00360, 2018. a
Araújo, T., Silva, L., and Moreira, A.: Evaluation of Low-Cost Sensors
for Weather and Carbon Dioxide Monitoring in Internet of Things
Context, IoT, 1, 286–308, https://doi.org/10.3390/iot1020017, 2020. a
Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Evaluation of
Low-Cost Sensors for Ambient PM2.5 Monitoring, Journal of
Sensors, 2018, e5096 540, https://doi.org/10.1155/2018/5096540,
2018. a
Bai, L., Huang, L., Wang, Z., Ying, Q., Zheng, J., Shi, X., and Hu, J.:
Long-term Field Evaluation of Low-cost Particulate Matter Sensors
in Nanjing, Aerosol Air Qual. Res., 20, 242–253,
https://doi.org/10.4209/aaqr.2018.11.0424, 2020. a
Brauer, M., Guttikunda, S. K., K a, N., Dey, S., Tripathi, S. N., Weagle, C.,
and Martin, R. V.: Examination of monitoring approaches for ambient air
pollution: A case study for India, Atmos. Environ., 216,
116940, https://doi.org/10.1016/j.atmosenv.2019.116940, 2019. a, b
ampmier, M. J., Gingrich, J., Singh, S., Baig, N., Gani, S., Upadhya, A., Agrawal, P.,
Kushwaha, M., Mishra, H., Pillarisetti, A., Vakacherla, S., Pathak, R., and Apte, J. S.: Seasonally optimized calibrations improve low-cost sensor performance: Long-term field evaluation of PurpleAir sensors in urban and rural India, Dryad [data set], https://doi.org/10.6078/D1RQ70, 2023. a
Chakrabarti, B., Fine, P. M., Delfino, R., and Sioutas, C.: Performance
evaluation of the active-flow personal DataRAM PM2.5 mass monitor
(Thermo Anderson pDR-1200) designed for continuous personal exposure
measurements, Atmos. Environ., 38, 3329–3340,
https://doi.org/10.1016/j.atmosenv.2004.03.007, 2004. a, b
Chen, Y., Wang, Y., Nenes, A., Wild, O., Song, S., Hu, D., Liu, D., He, J.,
Hildebrandt Ruiz, L., Apte, J. S., Gunthe, S. S., and Liu, P.: Ammonium
Chloride Associated Aerosol Liquid Water Enhances Haze in
Delhi, India, Environ. Sci. Technol., 56, 7163–7173,
https://doi.org/10.1021/acs.est.2c00650, 2022. a
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018. a
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, 2020. a
Dey, S., Purohit, B., Balyan, P., Dixit, K., Bali, K., Kumar, A., Imam, F.,
Chowdhury, S., Ganguly, D., Gargava, P., and Shukla, V. K.: A
Satellite-Based High-Resolution (1-km) Ambient PM2.5 Database
for India over Two Decades (2000–2019): Applications for Air
Quality Management, Remote Sens., 12, 3872, https://doi.org/10.3390/rs12233872,
2020. a
Dubey, A. K., Kumar, P., Saharwardi, M. S., and Javed, A.: Understanding the
hot season dynamics and variability across India, Weather and Climate
Extremes, 32, 100317, https://doi.org/10.1016/j.wace.2021.100317, 2021. a, b
Ferri, F. J., Pudil, P., Hatef, M., and Kittler, J.: Comparative study of
techniques for large-scale feature selection, in: Machine Intelligence and
Pattern Recognition, edited by: Gelsema, E. S. and Kanal, L. S., vol. 16
of Pattern Recognition in Practice IV,
North-Holland, 403–413, https://doi.org/10.1016/B978-0-444-81892-8.50040-7, 1994. a
Ganguly, T., Selvaraj, K. L., and Guttikunda, S. K.: National Clean Air
Programme (NCAP) for Indian cities: Review and outlook of clean air
action plans, Atmos. Environ., 8, 100096,
https://doi.org/10.1016/j.aeaoa.2020.100096, 2020. a
Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019. a, b, c
GBD 2019 Diseases and Injuries Collaborators: Global burden of 369 diseases and
injuries in 204 countries and territories, 1990–2019: a systematic analysis
for the Global Burden of Disease Study 2019, Lancet, 396,
1204–1222, https://doi.org/10.1016/S0140-6736(20)30925-9, 2020. a
Gupta, L., Dev, R., Zaidi, K., Sunder Raman, R., Habib, G., and Ghosh, B.:
Assessment of PM10 and PM2.5 over Ghaziabad, an industrial city in the
Indo-Gangetic Plain: spatio-temporal variability and associated health
effects, Environ. Monit. Assess., 193, 735,
https://doi.org/10.1007/s10661-021-09411-5, 2021. a
Guttikunda, S. K. and Gurjar, B. R.: Role of meteorology in seasonality of air
pollution in megacity Delhi, India, Environ. Monit.
Assess., 184, 3199–3211, https://doi.org/10.1007/s10661-011-2182-8, 2012. a
Guttikunda, S. K., Nishadh, K. A., Gota, S., Singh, P., Chanda, A., Jawahar,
P., and Asundi, J.: Air quality, emissions, and source contributions analysis
for the Greater Bengaluru region of India, Atmos. Pollut.
Res., 10, 941–953, https://doi.org/10.1016/j.apr.2019.01.002, number: 3, 2019. a, b
Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020, 2020. a, b, c, d
Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air
Quality Sensors and Data Adjustment Algorithms: When Is It
No Longer a Measurement?, Environ. Sci. Technol., 52,
5530–5531, https://doi.org/10.1021/acs.est.8b01826, 2018. a
Hall, E. and Gilliam, J.: Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants – Volume I, United States Environmental Protection Agency,
https://doi.org/10.13140/RG.2.1.2423.2563, 2016. a
Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu,
N. C., Levy, R. C., Garay, M. J., Kalashnikova, O. V., Kahn, R. A., Brauer,
M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., Ford, B., Pierce, J. R.,
and Martin, R. V.: Global Estimates and Long-Term Trends of Fine
Particulate Matter Concentrations (1998–2018), Environ. Sci.
Technol., 54, 7879–7890, https://doi.org/10.1021/acs.est.0c01764, 2020. a
He, M., Kuerbanjiang, N., and Dhaniyala, S.: Performance characteristics of the
low-cost Plantower PMS optical sensor, Aerosol Sci. Tech.,
54, 232–241, https://doi.org/10.1080/02786826.2019.1696015,
2020. a
India State-Level Disease Burden Initiative Air Pollution Collaborators: Health and economic impact of air
pollution in the states of India: the Global Burden of Disease
Study 2019, The Lancet Planetary Health, 5, e25–e38,
https://doi.org/10.1016/S2542-5196(20)30298-9, 2021. a
Jaffe, D. A., Miller, C., Thompson, K., Finley, B., Nelson, M., Ouimette, J., and Andrews, E.: An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events, Atmos. Meas. Tech., 16, 1311–1322, https://doi.org/10.5194/amt-16-1311-2023, 2023. a
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An introduction to
statistical learning, Springer, vol. 112, https://doi.org/10.1007/978-1-4614-7138-7, 2013. a, b
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-11-4883-2018, 2018. a, b
Jha, S. K., Kumar, M., Arora, V., Tripathi, S. N., Motghare, V. M., Shingare,
A. A., Rajput, K. A., and Kamble, S.: Domain Adaptation-Based Deep
Calibration of Low-Cost PM2.5 Sensors, IEEE Sensors J., 21,
25941–25949, https://doi.org/10.1109/JSEN.2021.3118454, 2021. a
Johnson, K. K., Bergin, M. H., Russell, A. G., and Hagler, G. S.: Field Test
of Several Low-Cost Particulate Matter Sensors in High and
Low Concentration Urban Environments, Aerosol Air Qual.
Res., 18, 565–578, https://doi.org/10.4209/aaqr.2017.10.0418, 2018. a
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D.,
Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a
low-cost particulate matter sensor, Environ. Pollut., 221, 491–500,
https://doi.org/10.1016/j.envpol.2016.12.039, 2017. a, b
Krishna, B., Mandal, S., Madhipatla, K., Reddy, K., Prabhakaran, D., and
Schwartz, J.: Daily nonaccidental mortality associated with short-Term
PM2.5 exposures in Delhi, India, Environ. Epidemiol., 5, e167,
https://doi.org/10.1097/EE9.0000000000000167, 2021. a
Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., and Timonen, H.: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors, Atmos. Meas. Tech., 13, 2413–2423, https://doi.org/10.5194/amt-13-2413-2020, 2020. a, b, c
Lepeule, J., Laden, F., Dockery, D., and Schwartz, J.: Chronic Exposure to
Fine Particles and Mortality: An Extended Follow-up of the
Harvard Six Cities Study from 1974 to 2009, Environ. Health
Persp., 120, 965–970,
2012. a
Levy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., and
Koehler, K.: Field and Laboratory Evaluations of the Low-Cost
Plantower Particulate Matter Sensor, Environ. Sci.
Technol., 53, 838–849, https://doi.org/10.1021/acs.est.8b05174, 2019. a, b, c
Levy Zamora, M., Buehler, C., Datta, A., Gentner, D. R., and Koehler, K.: Identifying optimal co-location calibration periods for low-cost sensors, Atmos. Meas. Tech., 16, 169–179, https://doi.org/10.5194/amt-16-169-2023, 2023. a
Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of
PM2.5 measured in an urban setting using a low-cost optical particle
counter and a Federal Equivalent Method Beta Attenuation Monitor,
Aerosol Sci. Technol., 54, 147–159,
https://doi.org/10.1080/02786826.2019.1619915, 2020. a, b, c, d
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto,
A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost
sensors: Corrections and long-term performance evaluation, Aerosol Sci.
Technol., 54, 160–174, https://doi.org/10.1080/02786826.2019.1623863,
2019. a, b, c, d, e, f, g, h
Malyan, V., Kumar, V., and Sahu, M.: Significance of sources and size
distribution on calibration of low-cost particle sensors: Evidence from a
field sampling campaign, J. Aerosol Sci., 168, 106114,
https://doi.org/10.1016/j.jaerosci.2022.106114, 2023. a, b, c
Martin, R. V., Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., and
Dey, S.: No one knows which city has the highest concentration of fine
particulate matter, Atmos. Environ., 3, 100040,
https://doi.org/10.1016/j.aeaoa.2019.100040, 2019. a
McFarlane, C., Isevulambire, P. K., Lumbuenamo, R. S., Ndinga, A. M. E.,
Dhammapala, R., Jin, X., McNeill, V. F., Malings, C., Subramanian, R., and
Westervelt, D. M.: First Measurements of Ambient PM2.5 in Kinshasa,
Democratic Republic of Congo and Brazzaville, Republic of Congo
Using Field-calibrated Low-cost Sensors, Aerosol Air Qual.
Res., 21, 200619, https://doi.org/10.4209/aaqr.200619, 2021. a, b, c, d, e
Mehadi, A., Moosmüller, H., Campbell, D. E., Ham, W., Schweizer, D., Tarnay,
L., and Hunter, J.: Laboratory and field evaluation of real-time and near
real-time PM2.5 smoke monitors, J. Air Waste Manage., 70, 158–179, https://doi.org/10.1080/10962247.2019.1654036, 2020. a, b
Ouimette, J. R., Malm, W. C., Schichtel, B. A., Sheridan, P. J., Andrews, E., Ogren, J. A., and Arnott, W. P.: Evaluating the PurpleAir monitor as an aerosol light scattering instrument, Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022, 2022. a, b, c
Patel, K., Campmier, M. J., Bhandari, S., Baig, N., Gani, S., Habib, G., Apte,
J. S., and Hildebrandt Ruiz, L.: Persistence of Primary and Secondary
Pollutants in Delhi: Concentrations and Composition from 2017 through
the COVID Pandemic, Environ. Sci. Tech. Let., 8,
492–497, https://doi.org/10.1021/acs.estlett.1c00211, 2021. a
Puttaswamy, N., Sreekanth, V., Pillarisetti, A., Upadhya, A. R., Saidam, S.,
Veerappan, B., Mukhopadhyay, K., Sambandam, S., Sutaria, R., and
Balakrishnan, K.: Indoor and Ambient Air Pollution in Chennai,
India during COVID-19 Lockdown: An Affordable Sensors Study,
Aerosol Air Qual. Res., 22, 210170, https://doi.org/10.4209/aaqr.210170,
2022. a, b, c, d
Ramachandra, T. V., Sellers, J., Bharath, H. A., and Setturu, B.: Micro level
analyses of environmentally disastrous urbanization in Bangalore,
Environ. Monit. Assess., 191, 787,
https://doi.org/10.1007/s10661-019-7693-8, 2020. a
Raschka, S. and Mirjalili, V.: Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edn., Packt Publishing Ltd, 771 pp., ISBN 978-1-78995-829-4, 2019. a
Rooney, B., Zhao, R., Wang, Y., Bates, K. H., Pillarisetti, A., Sharma, S., Kundu, S., Bond, T. C., Lam, N. L., Ozaltun, B., Xu, L., Goel, V., Fleming, L. T., Weltman, R., Meinardi, S., Blake, D. R., Nizkorodov, S. A., Edwards, R. D., Yadav, A., Arora, N. K., Smith, K. R., and Seinfeld, J. H.: Impacts of household sources on air pollution at village and regional scales in India, Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, 2019. a
Sahu, R., Dixit, K. K., Mishra, S., Kumar, P., Shukla, A. K., Sutaria, R.,
Tiwari, S., and Tripathi, S. N.: Validation of Low-Cost Sensors in
Measuring Real-Time PM10 Concentrations at Two Sites in Delhi
National Capital Region, Sensors, 20, 1347, https://doi.org/10.3390/s20051347,
2020. a, b
San Martini, F. M., Hasenkopf, C. A., and Roberts, D. C.: Statistical analysis
of PM2.5 observations from diplomatic facilities in China, Atmos.
Environ., 110, 174–185, https://doi.org/10.1016/j.atmosenv.2015.03.060, 2015. a, b
Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of
the Plantower PMS low-cost particulate matter sensors, Environ.
Pollut., 245, 932–940, https://doi.org/10.1016/j.envpol.2018.11.065, 2019. a
Simon, H., Baker, K. R., and Phillips, S.: Compilation and interpretation of
photochemical model performance statistics published between 2006 and 2012,
Atmos. Environ., 61, 124–139, https://doi.org/10.1016/j.atmosenv.2012.07.012,
2012. a, b, c
Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., and Ravindra, K.:
Diurnal and temporal changes in air pollution during COVID-19 strict
lockdown over different regions of India, Environ. Pollut., 266,
115368, https://doi.org/10.1016/j.envpol.2020.115368, 2020. a
Sreekanth, V., R., A. B., Kulkarni, P., Puttaswamy, N., Prabhu, V., Agrawal,
P., Upadhya, A. R., Rao, S., Sutaria, R., Mor, S., Dey, S., Khaiwal, R.,
Balakrishnan, K., Tripathi, S. N., and Singh, P.: Inter- versus Intracity
Variations in the Performance and Calibration of Low-Cost PM2.5
Sensors: A Multicity Assessment in India, ACS Earth Space
Chem., 6, 3007–3016, https://doi.org/10.1021/acsearthspacechem.2c00257, 2022.
a, b, c
Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C.,
Wilson, A., and Volckens, J.: Laboratory evaluation of low-cost PurpleAir
PM monitors and in-field correction using co-located portable filter
samplers, Atmos. Environ., 220, 117067,
https://doi.org/10.1016/j.atmosenv.2019.117067, 2020. a, b
Vaughn, D. L.: Standard Operating Procedure for the Continuous Measurement of Particulate Matter, https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_BAM_SOP_Draft_Final_Oct09.pdf (last access: 15 September 2023), 2009. a
Wallace, L. and Ott, W.: Long-Term Indoor-Outdoor PM2.5 Measurements
Using PurpleAir Sensors: An Improved Method of Calculating
Indoor-Generated and Outdoor-Infiltrated Contributions to
Potential Indoor Exposure, Sensors, 23, 1160, https://doi.org/10.3390/s23031160,
2023. a
Wallace, L. and Zhao, T.: Spatial Variation of PM2.5 Indoors and
Outdoors: Results from 261 Regulatory Monitors Compared to 14,000
Low-Cost Monitors in Three Western States over 4.7 Years,
Sensors, 23, 4387, https://doi.org/10.3390/s23094387, 2023. a
Wallace, L., Ott, W., Zhao, T., Cheng, K.-C., and Hildemann, L.: Secondhand
exposure from vaping marijuana: Concentrations, emissions, and exposures
determined using both research-grade and low-cost monitors, Atmos.
Environ., 8, 100093, https://doi.org/10.1016/j.aeaoa.2020.100093, 2020. a
Wallace, L., Bi, J., Ott, W. R., Sarnat, J., and Liu, Y.: Calibration of
low-cost PurpleAir outdoor monitors using an improved method of calculating
PM2.5, Atmos. Environ., 256, 118432,
https://doi.org/10.1016/j.atmosenv.2021.118432, 2021. a, b, c, d
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018. a, b, c, d, e, f, g, h, i
Zheng, T., Bergin, M. H., Sutaria, R., Tripathi, S. N., Caldow, R., and Carlson, D. E.: Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi, Atmos. Meas. Tech., 12, 5161–5181, https://doi.org/10.5194/amt-12-5161-2019, 2019. a, b, c
Zou, Y., Clark, J. D., and May, A. A.: Laboratory evaluation of the effects of
particle size and composition on the performance of integrated devices
containing Plantower particle sensors, Aerosol Sci. Tech., 55, 848–858, https://doi.org/10.1080/02786826.2021.1905148, 2021. a
Short summary
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations in India (Delhi, Hamirpur, and Bangalore) to characterize its performance. We compared its signal to more expensive reference sensors and found that the PurpleAir sensor was precise but inaccurate without calibration. We created a custom calibration equation for each location, which improved the accuracy of the PurpleAir sensor, and found that calibrations should be adjusted for different seasons.
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations...