Articles | Volume 16, issue 21
https://doi.org/10.5194/amt-16-5181-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-5181-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A flexible device to produce a gas stream with a precisely controlled water vapour mixing ratio and isotope composition based on microdrop dispensing technology
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Alena Dekhtyareva
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Alvaro Fernandez
Bjerknes Centre for Climate Research, Bergen, Norway
Department of Earth Science, University of Bergen, Bergen, Norway
Andalusian Earth Sciences Institute, CSIC–University of Granada, Granada, Spain
Andrew Seidl
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Jenny Maccali
Bjerknes Centre for Climate Research, Bergen, Norway
Department of Earth Science, University of Bergen, Bergen, Norway
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
Related authors
Daniele Zannoni, Hans Christian Steen-Larsen, Harald Sodemann, Iris Thurnherr, Cyrille Flamant, Patrick Chazette, Julien Totems, Martin Werner, and Myriam Raybaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3394, https://doi.org/10.5194/egusphere-2024-3394, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
High resolution airborne observations reveal that mixing between the free troposphere and surface evapotranspiration flux primarly modulates the water vapor isotopic composition in the lower troposphere. Water vapor isotopes structure variations occur on the scale of 100s of m, underlying the utility of stable isotopes for studying microscale atmospheric dynamics. This study also provides the basis for better validation of water vapor isotopes remote sensing retrievals with surface observations.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Preprint under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1879, https://doi.org/10.5194/egusphere-2024-1879, 2024
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Astrid Fremme, Paul J. Hezel, Øyvind Seland, and Harald Sodemann
Weather Clim. Dynam., 4, 449–470, https://doi.org/10.5194/wcd-4-449-2023, https://doi.org/10.5194/wcd-4-449-2023, 2023
Short summary
Short summary
We study the atmospheric moisture transport into eastern China for past, present, and future climate. Hence, we use different climate and weather prediction model data with a moisture source identification method. We find that while the moisture to first order originates mostly from similar regions, smaller changes consistently point to differences in the recycling of precipitation over land between different climates. Some differences are larger between models than between different climates.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Yongbiao Weng, Aina Johannessen, and Harald Sodemann
Weather Clim. Dynam., 2, 713–737, https://doi.org/10.5194/wcd-2-713-2021, https://doi.org/10.5194/wcd-2-713-2021, 2021
Short summary
Short summary
High-resolution measurements of stable isotopes in near-surface vapour and precipitation show a
W-shaped evolution during a 24 h land-falling atmospheric river event in southern Norway. We distinguish contributions from below-cloud processes, weather system characteristics, and moisture source conditions during different stages of the event. Rayleigh distillation models need to be expanded by additional processes to accurately predict isotopes in surface precipitation from stratiform clouds.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Astrid Fremme and Harald Sodemann
Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, https://doi.org/10.5194/hess-23-2525-2019, 2019
Short summary
Short summary
This study examines the evaporation sources of precipitation falling over the Yangtze River valley on China's east coast. The summer monsoon rainfall causes large seasonal and interannual variations which affect a large population. We found that evaporation from surrounding land regions is important, supplying more than half of the summertime precipitation. Extreme dry and wet summers are connected to contributions from specific land and ocean regions.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
Atmos. Chem. Phys., 15, 8479–8520, https://doi.org/10.5194/acp-15-8479-2015, https://doi.org/10.5194/acp-15-8479-2015, 2015
Short summary
Short summary
Measurements of the Saharan atmosphere and of atmospheric mineral dust are lacking but are vital to our understanding of the climate of this region and their impacts further afield. Novel observations were made by the Fennec climate programme during June 2011 and 2012 using ground-based, remote sensing and airborne platforms. Here we describe the airborne observations and the contributions they have made to furthering our understanding of the Saharan climate system.
A. Winschall, S. Pfahl, H. Sodemann, and H. Wernli
Atmos. Chem. Phys., 14, 6605–6619, https://doi.org/10.5194/acp-14-6605-2014, https://doi.org/10.5194/acp-14-6605-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
S. Pfahl and H. Sodemann
Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, https://doi.org/10.5194/cp-10-771-2014, 2014
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
C. L. Ryder, E. J. Highwood, P. D. Rosenberg, J. Trembath, J. K. Brooke, M. Bart, A. Dean, J. Crosier, J. Dorsey, H. Brindley, J. Banks, J. H. Marsham, J. B. McQuaid, H. Sodemann, and R. Washington
Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, https://doi.org/10.5194/acp-13-303-2013, 2013
Daniele Zannoni, Hans Christian Steen-Larsen, Harald Sodemann, Iris Thurnherr, Cyrille Flamant, Patrick Chazette, Julien Totems, Martin Werner, and Myriam Raybaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3394, https://doi.org/10.5194/egusphere-2024-3394, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
High resolution airborne observations reveal that mixing between the free troposphere and surface evapotranspiration flux primarly modulates the water vapor isotopic composition in the lower troposphere. Water vapor isotopes structure variations occur on the scale of 100s of m, underlying the utility of stable isotopes for studying microscale atmospheric dynamics. This study also provides the basis for better validation of water vapor isotopes remote sensing retrievals with surface observations.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Preprint under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1879, https://doi.org/10.5194/egusphere-2024-1879, 2024
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Astrid Fremme, Paul J. Hezel, Øyvind Seland, and Harald Sodemann
Weather Clim. Dynam., 4, 449–470, https://doi.org/10.5194/wcd-4-449-2023, https://doi.org/10.5194/wcd-4-449-2023, 2023
Short summary
Short summary
We study the atmospheric moisture transport into eastern China for past, present, and future climate. Hence, we use different climate and weather prediction model data with a moisture source identification method. We find that while the moisture to first order originates mostly from similar regions, smaller changes consistently point to differences in the recycling of precipitation over land between different climates. Some differences are larger between models than between different climates.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Tatiana Drotikova, Alena Dekhtyareva, Roland Kallenborn, and Alexandre Albinet
Atmos. Chem. Phys., 21, 14351–14370, https://doi.org/10.5194/acp-21-14351-2021, https://doi.org/10.5194/acp-21-14351-2021, 2021
Short summary
Short summary
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil fuel combustion, were measured during 8 months in the urban air of Longyearbyen (78° N, 15° E), the most populated settlement in Svalbard. Contrary to a stereotype of pristine Arctic conditions with very low human activity, considerable PAC concentrations were detected, with spring levels comparable to European levels. Air pollution was caused by local snowmobiles in spring and shipping in summer.
Yongbiao Weng, Aina Johannessen, and Harald Sodemann
Weather Clim. Dynam., 2, 713–737, https://doi.org/10.5194/wcd-2-713-2021, https://doi.org/10.5194/wcd-2-713-2021, 2021
Short summary
Short summary
High-resolution measurements of stable isotopes in near-surface vapour and precipitation show a
W-shaped evolution during a 24 h land-falling atmospheric river event in southern Norway. We distinguish contributions from below-cloud processes, weather system characteristics, and moisture source conditions during different stages of the event. Rayleigh distillation models need to be expanded by additional processes to accurately predict isotopes in surface precipitation from stratiform clouds.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Astrid Fremme and Harald Sodemann
Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, https://doi.org/10.5194/hess-23-2525-2019, 2019
Short summary
Short summary
This study examines the evaporation sources of precipitation falling over the Yangtze River valley on China's east coast. The summer monsoon rainfall causes large seasonal and interannual variations which affect a large population. We found that evaporation from surrounding land regions is important, supplying more than half of the summertime precipitation. Extreme dry and wet summers are connected to contributions from specific land and ocean regions.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
Atmos. Chem. Phys., 15, 8479–8520, https://doi.org/10.5194/acp-15-8479-2015, https://doi.org/10.5194/acp-15-8479-2015, 2015
Short summary
Short summary
Measurements of the Saharan atmosphere and of atmospheric mineral dust are lacking but are vital to our understanding of the climate of this region and their impacts further afield. Novel observations were made by the Fennec climate programme during June 2011 and 2012 using ground-based, remote sensing and airborne platforms. Here we describe the airborne observations and the contributions they have made to furthering our understanding of the Saharan climate system.
A. Winschall, S. Pfahl, H. Sodemann, and H. Wernli
Atmos. Chem. Phys., 14, 6605–6619, https://doi.org/10.5194/acp-14-6605-2014, https://doi.org/10.5194/acp-14-6605-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
S. Pfahl and H. Sodemann
Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, https://doi.org/10.5194/cp-10-771-2014, 2014
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
C. L. Ryder, E. J. Highwood, P. D. Rosenberg, J. Trembath, J. K. Brooke, M. Bart, A. Dean, J. Crosier, J. Dorsey, H. Brindley, J. Banks, J. H. Marsham, J. B. McQuaid, H. Sodemann, and R. Washington
Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, https://doi.org/10.5194/acp-13-303-2013, 2013
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A new portable sampler of atmospheric methane for radiocarbon measurements
High-precision oxygen isotope (δ18O) measurements of atmospheric dioxygen using optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS)
Water vapor stable isotope memory effects of common tubing materials
Product Ion Distributions using H3O+ PTR-ToF-MS: Mechanisms, Transmission Effects, and Instrument-to-Instrument Variability
Evaluation of a reduced-pressure chemical ion reactor utilizing adduct ionization for the detection of gaseous organic and inorganic species
Ammonium CI-Orbitrap: a tool for characterizing the reactivity of oxygenated organic molecules
A high-accuracy dynamic dilution method for generating reference gas mixtures of carbonyl sulfide at sub-nanomole-per-mole levels for long-term atmospheric observation
Optimizing the iodide-adduct chemical ionization mass spectrometry (CIMS) quantitative method for toluene oxidation intermediates: experimental insights into functional-group differences
Simultaneous measurement of greenhouse gases (CH4, CO2 and N2O) at atmospheric levels using a gas chromatography system
Characterization of a new Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products
A versatile water vapor generation module for vapor isotope calibration and liquid isotope measurements
Extraction, purification, and clumped isotope analysis of methane (Δ13CDH3 and Δ12CD2H2) from sources and the atmosphere
Response of protonated, adduct, and fragmented ions in Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS)
Absorption of volatile organic compounds (VOCs) by polymer tubing: implications for indoor air and use as a simple gas-phase volatility separation technique
Revision of an open-split-based dual-inlet system for elemental and isotope ratio mass spectrometers with a focus on clumped-isotope measurements
Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods
A novel inlet for enriching concentrations of reactive organic gases in low sampling flows
Characterizing the automatic radon flux transfer standard system Autoflux: laboratory calibration and field experiments
Influence of ozone and humidity on PTR-MS and GC-MS VOC measurements with and without a Na2S2O3 ozone scrubber
Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores
Ozone reactivity measurement of biogenic volatile organic compound emissions
Comparison of two photolytic calibration methods for nitrous acid
Measurement of enantiomer percentages for five monoterpenes from six conifer species by cartridge-tube-based passive sampling adsorption–thermal desorption (ps-ATD)
Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH2OO Criegee intermediate
Air pollution monitoring: development of ammonia (NH3) dynamic reference gas mixtures at nanomoles per mole levels to improve the lack of traceability of measurements
Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)
Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
MULTICHARME: a modified Chernin-type multi-pass cell designed for IR and THz long-path absorption measurements in the CHARME atmospheric simulation chamber
Silicone tube humidity generator
A source for the continuous generation of pure and quantifiable HONO mixtures
Photochemical method for removing methane interference for improved gas analysis
A simulation chamber for absorption spectroscopy in planetary atmospheres
An automated system for trace gas flux measurements from plant foliage and other plant compartments
Simultaneous measurement of δ13C, δ18O and δ17O of atmospheric CO2 – performance assessment of a dual-laser absorption spectrometer
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements
New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction
High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples
A thermal-dissociation–cavity ring-down spectrometer (TD-CRDS) for the detection of organic nitrates in gas and particle phases
Interference from alkenes in chemiluminescent NOx measurements
Calibration of an airborne HOx instrument using the All Pressure Altitude-based Calibrator for HOx Experimentation (APACHE)
Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry
An instrument for in situ measurement of total ozone reactivity
Portable calibrator for NO based on the photolysis of N2O and a combined NO2∕NO∕O3 source for field calibrations of air pollution monitors
A new instrument for time-resolved measurement of HO2 radicals
Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis
Towards an understanding of surface effects: testing of various materials in a small volume measurement chamber and its relevance for atmospheric trace gas analysis
Stability of halocarbons in air samples stored in stainless- steel canisters
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Clément Piel, Daniele Romanini, Morgane Farradèche, Justin Chaillot, Clémence Paul, Nicolas Bienville, Thomas Lauwers, Joana Sauze, Kévin Jaulin, Frédéric Prié, and Amaëlle Landais
Atmos. Meas. Tech., 17, 6647–6658, https://doi.org/10.5194/amt-17-6647-2024, https://doi.org/10.5194/amt-17-6647-2024, 2024
Short summary
Short summary
This paper introduces a new optical gas analyzer based on an optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique enabling high-temporal-resolution and high-precision measurements of oxygen isotopes (δ18O) and dioxygen (O2) concentration of atmospheric O2 (respectively 0.06 ‰ and 0.002 % over 10 min integration). The results underscore the good agreement with isotope ratio mass spectrometry measurements and the ability of the instrument to monitor biological processes.
Alexandra L. Meyer and Lisa R. Welp
Atmos. Meas. Tech., 17, 6193–6212, https://doi.org/10.5194/amt-17-6193-2024, https://doi.org/10.5194/amt-17-6193-2024, 2024
Short summary
Short summary
Water molecules stick to air intake tubing wall surfaces, smoothing measurements of fast isotopic variability in the atmosphere. We tested this stickiness and saw small differences in isotopic signal speed between materials, tubing inner dimensions, and isotopic switch direction, although no consistent temperature effects. Researchers can confidently compare measurements across observation systems using different commonly used tubing materials and plan for optimal inlet designs of new systems.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-3132, https://doi.org/10.5194/egusphere-2024-3132, 2024
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Matthieu Riva, Veronika Pospisilova, Carla Frege, Sebastien Perrier, Priyanka Bansal, Spiro Jorga, Patrick Sturm, Joel A. Thornton, Urs Rohner, and Felipe Lopez-Hilfiker
Atmos. Meas. Tech., 17, 5887–5901, https://doi.org/10.5194/amt-17-5887-2024, https://doi.org/10.5194/amt-17-5887-2024, 2024
Short summary
Short summary
We present a newly designed reduced-pressure chemical ionization reactor for detection of gas-phase organic and inorganic species. The system operates through the combined use of vacuum ultraviolet ionization and photosensitizers to generate numerous adduct ionization schemes. As a result, it offers the ability to simultaneously measure a wide variety of organic and inorganic species in terms of compound volatility and functionality, while being largely independent of changes in sample humidity.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech., 17, 5413–5428, https://doi.org/10.5194/amt-17-5413-2024, https://doi.org/10.5194/amt-17-5413-2024, 2024
Short summary
Short summary
Due to the analytical challenges of measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere. Here, we explore the performance of the Orbitrap chemical ionization mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds.
Hideki Nara, Takuya Saito, Taku Umezawa, and Yasunori Tohjima
Atmos. Meas. Tech., 17, 5187–5200, https://doi.org/10.5194/amt-17-5187-2024, https://doi.org/10.5194/amt-17-5187-2024, 2024
Short summary
Short summary
We have developed a high-accuracy dynamic dilution system for generating reference gas mixtures containing carbonyl sulfide (COS). Although COS at ambient levels generally has poor storage stability, our approach involves the dilution of a gas mixture containing micromole-per-mole levels of COS, the stability of which was validated for more than 1 decade. The developed system has excellent dilution performance and will facilitate accurate instrumental calibration for atmospheric COS observation.
Mengdi Song, Shuyu He, Xin Li, Ying Liu, Shengrong Lou, Sihua Lu, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 17, 5113–5127, https://doi.org/10.5194/amt-17-5113-2024, https://doi.org/10.5194/amt-17-5113-2024, 2024
Short summary
Short summary
We introduce detailed and improved quantitation and semi-quantitation methods of iodide-adduct time-of-flight chemical ionization mass spectrometry (I-CIMS) to measure toluene oxidation intermediates. We assess the experimental sensitivity of various functional group species and their binding energy with iodide ions in I-CIMS. A novel classification approach was introduced to significantly enhance the accuracy of semi-quantitative methods (improving R2 values from 0.52 to beyond 0.88).
Michal Bucha, Dominika Lewicka-Szczebak, and Piotr Wójtowicz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2125, https://doi.org/10.5194/egusphere-2024-2125, 2024
Short summary
Short summary
Manuscript presents new method for determination of GHG’s (CH4, CO2 and N2O) at ambient levels using chromatographic system with barrier ion discharge detector (BID) and Carboxen 1010 column. System is omitting the need for an electron capture detector (ECD) containing radiogenic components for N2O analysis and a flame ionisation detector (FID) with a methaniser for CO2 samples. This simplification reduces analytical costs, facilitates instrument maintenance and improves measurement robustness.
Finja Löher, Esther Borrás, Amalia Muñoz, and Anke Christine Nölscher
Atmos. Meas. Tech., 17, 4553–4579, https://doi.org/10.5194/amt-17-4553-2024, https://doi.org/10.5194/amt-17-4553-2024, 2024
Short summary
Short summary
We constructed and characterized a new indoor Teflon atmospheric simulation chamber. We evaluated wall losses, photolysis rates, and secondary reactions of multifunctional photooxidation products in the chamber. To measure these products on-line, we combined chromatographic and mass spectrometric analyses to obtain both isomeric information and a high temporal resolution. For method validation, we studied the formation yields of the main ring-retaining products of toluene.
Hans Christian Steen-Larsen and Daniele Zannoni
Atmos. Meas. Tech., 17, 4391–4409, https://doi.org/10.5194/amt-17-4391-2024, https://doi.org/10.5194/amt-17-4391-2024, 2024
Short summary
Short summary
The water vapor generation module is completely scalable, allowing autonomous calibrations to use N standards and providing integration times only restricted by sample availability. We document improved reproducibility in 17O-excess liquid measurements. This module makes spectroscopy measurements comparable to mass spectrometry. We document that the vapor generation module can be used to analyze instrument performance and for vapor isotope calibration during field campaign measurements.
Malavika Sivan, Thomas Röckmann, Carina van der Veen, and Maria Elena Popa
Atmos. Meas. Tech., 17, 2687–2705, https://doi.org/10.5194/amt-17-2687-2024, https://doi.org/10.5194/amt-17-2687-2024, 2024
Short summary
Short summary
We have set up a measurement system for methane-clumped isotopologues. We have built an extraction and purification system to extract pure methane for these measurements, for samples of various origins, including atmospheric air, for which we need to process about 1000 L of air for one measurement. We report here the technical setup for extraction and measurements, as well as the calibration, and we give an overview of the samples measured so far.
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024, https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Short summary
The responses of protonated, adduct, and fragmented ions of 21 volatile organic compounds (VOCs) were investigated with varying instrument settings and relative humidity (RH) in a Vocus proton-transfer-reaction mass spectrometer (PTR-MS). The protonated ions of most VOCs studied show < 15 % variation in sensitivity, except for some long-chain aldehydes. The relationship between sensitivity and PTR rate constant is complicated by the influences from ion transmission and protonated ion fraction.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Stephan Räss, Peter Nyfeler, Paul Wheeler, Will Price, and Markus Christian Leuenberger
Atmos. Meas. Tech., 16, 4489–4505, https://doi.org/10.5194/amt-16-4489-2023, https://doi.org/10.5194/amt-16-4489-2023, 2023
Short summary
Short summary
Due to technological advances clumped-isotope studies have gained importance in recent years. Typically, these studies are performed with high-resolution isotope ratio mass spectrometers (IRMSs) along with a changeover-valve-based dual-inlet system (DIS). We are taking a different approach, namely performing clumped-isotope measurements with a compact low-resolution IRMS with an open-split-based DIS. Currently, we are working with pure-oxygen gas for which we are providing a proof of concept.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4319–4330, https://doi.org/10.5194/amt-16-4319-2023, https://doi.org/10.5194/amt-16-4319-2023, 2023
Short summary
Short summary
Measuring volatile organic compounds (VOCs) in the atmosphere is crucial for understanding air quality and environmental impact. Since these compounds are present in low concentrations, preconcentration of samples is often necessary for accurate detection. To address this issue, we have developed a novel inlet that uses selective permeation to concentrate organic gases in small sample flows. This device offers a promising approach for accurately detecting low levels of VOCs in the atmosphere.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Lisa Ernle, Monika Akima Ringsdorf, and Jonathan Williams
Atmos. Meas. Tech., 16, 1179–1194, https://doi.org/10.5194/amt-16-1179-2023, https://doi.org/10.5194/amt-16-1179-2023, 2023
Short summary
Short summary
Atmospheric ozone can induce artefacts in volatile organic compound measurements. Laboratory tests were made using GC-MS and PTR-MS aircraft systems under tropospheric and stratospheric conditions of humidity and ozone, with and without sodium thiosulfate filter scrubbers. Ozone in dry air produces some carbonyls and degrades alkenes. The scrubber lifetime depends on ozone concentration, flow rate and humidity. For the troposphere with scrubber, no significant artefacts were found over 14 d.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Andrew J. Lindsay and Ezra C. Wood
Atmos. Meas. Tech., 15, 5455–5464, https://doi.org/10.5194/amt-15-5455-2022, https://doi.org/10.5194/amt-15-5455-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) is an important source of the main atmospheric oxidant – the hydroxyl radical (OH). Advances in nitrous acid measurement techniques and calibration methods therefore improve our understanding of atmospheric oxidation processes. In this paper, we present two calibration methods based on photo-dissociating water vapor. These calibration methods are useful alternatives to conventional calibrations that involve a reacting hydrogen chloride vapor with sodium nitrite.
Ying Wang, Wentai Luo, Todd N. Rosenstiel, and James F. Pankow
Atmos. Meas. Tech., 15, 4651–4661, https://doi.org/10.5194/amt-15-4651-2022, https://doi.org/10.5194/amt-15-4651-2022, 2022
Short summary
Short summary
A rapid, sensitive, and precise analytical method was developed for measuring the fractional amounts of the (−) and (+) forms of chiral enantiomeric forms of monoterpenes in air containing biogenic plant emissions. The method uses passive air sampling onto adsorption–thermal desorption (ATD) gas sampling cartridge tubes; this is followed by automatable thermal desorption onto a chiral gas chromatography (GC) column, followed by detection with mass spectrometry (MS).
Zara S. Mir, Matthew Jamieson, Nicholas R. Greenall, Paul W. Seakins, Mark A. Blitz, and Daniel Stone
Atmos. Meas. Tech., 15, 2875–2887, https://doi.org/10.5194/amt-15-2875-2022, https://doi.org/10.5194/amt-15-2875-2022, 2022
Short summary
Short summary
In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. This work has significance for the identification and measurement of reactive trace species in complex systems.
Tatiana Macé, Maitane Iturrate-Garcia, Céline Pascale, Bernhard Niederhauser, Sophie Vaslin-Reimann, and Christophe Sutour
Atmos. Meas. Tech., 15, 2703–2718, https://doi.org/10.5194/amt-15-2703-2022, https://doi.org/10.5194/amt-15-2703-2022, 2022
Short summary
Short summary
LNE developed, with the company 2M PROCESS, a gas reference generator to dynamically generate NH3 reference gas mixtures in the air at very low fractions between 1 and 400 nmol/mol. The procedure defined by LNE for calibrating NH3 analyzers used for monitoring air quality guarantees relative expanded uncertainties lower than 2 % for this measurement range. The results of a comparison organized between METAS and LNE allowed the validation of LNE's reference generator and calibration procedure.
Antonia G. Zogka, Manolis N. Romanias, and Frederic Thevenet
Atmos. Meas. Tech., 15, 2001–2019, https://doi.org/10.5194/amt-15-2001-2022, https://doi.org/10.5194/amt-15-2001-2022, 2022
Short summary
Short summary
We emphasize the application of SIFT-MS to detect two important atmospheric pollutants, i.e., formaldehyde (FM) and glyoxal (GL). FM and GL are secondary products formed by volatile organic compound oxidation in indoor and outdoor environments and play a key role in air quality and climate. We show that SIFT-MS is able to monitor these species selectively and in real time, overcoming the limitations of other, classical analytical techniques used to monitor these species in the atmosphere.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Jean Decker, Éric Fertein, Jonas Bruckhuisen, Nicolas Houzel, Pierre Kulinski, Bo Fang, Weixiong Zhao, Francis Hindle, Guillaume Dhont, Robin Bocquet, Gaël Mouret, Cécile Coeur, and Arnaud Cuisset
Atmos. Meas. Tech., 15, 1201–1215, https://doi.org/10.5194/amt-15-1201-2022, https://doi.org/10.5194/amt-15-1201-2022, 2022
Short summary
Short summary
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and Metrology of the Environment. This multi-pass cell allows monitoring of atmospheric species at trace levels by high-resolution spectroscopy with long interaction path lengths in the IR and for the first time in the terahertz range. Interesting prospects are highlighted in this frequency domain, such as a high degree of selectivity or the possibility to monitor in real-time atmospheric processes.
Robert F. Berg, Nicola Chiodo, and Eric Georgin
Atmos. Meas. Tech., 15, 819–832, https://doi.org/10.5194/amt-15-819-2022, https://doi.org/10.5194/amt-15-819-2022, 2022
Short summary
Short summary
We made a humidity generator that adds water vapor to a flowing gas. Its range of humidity is useful for calibrating balloon-borne probes to the Earth's stratosphere. The generator’s novel feature is a saturator that comprises 5 m of silicone tubing immersed in water. The length was enough to ensure that the saturator’s output was independent of the dimensions and permeability of the tube. This simple, low-cost design provides an accuracy that is acceptable for many applications.
Guillermo Villena and Jörg Kleffmann
Atmos. Meas. Tech., 15, 627–637, https://doi.org/10.5194/amt-15-627-2022, https://doi.org/10.5194/amt-15-627-2022, 2022
Short summary
Short summary
A continuous source for the generation of pure HONO mixtures was developed and characterized, which is based on the Henry's law solubility of HONO in acidic aqueous solutions. The source shows a fast time response and an excellent long-term stability and can be easily adjusted to HONO mixing ratios in the range 0.05–500 ppb. A general equation based on Henry's law is developed, whereby the HONO concentration of the source can be absolutely calculated with an accuracy of better than 10 %.
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021, https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Short summary
We have designed a process for removing methane from a gas stream so that nitrous oxide can be measured without interference. These are both key long-lived greenhouse gases frequently studied in relation to ice cores, plants, water treatment and so on. However, many researchers are not aware of the problem of methane interference, and in addition there have not been good methods available for solving the problem. Here we present and evaluate such a method.
Marcel Snels, Stefania Stefani, Angelo Boccaccini, David Biondi, and Giuseppe Piccioni
Atmos. Meas. Tech., 14, 7187–7197, https://doi.org/10.5194/amt-14-7187-2021, https://doi.org/10.5194/amt-14-7187-2021, 2021
Short summary
Short summary
A novel simulation chamber, PASSxS (Planetary Atmosphere Simulation System for Spectroscopy), has been developed for absorption measurements with a Fourier transform spectrometer (FTS) and possibly a cavity ring-down (CRD) spectrometer, with a sample temperature ranging from 100 K up to 550 K, while the pressure of the gas can be varied up to 60 bar. These temperature and pressure ranges cover a significant part of the planetary atmospheres in the solar system and possibly extrasolar planets.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Pharahilda M. Steur, Hubertus A. Scheeren, Dave D. Nelson, J. Barry McManus, and Harro A. J. Meijer
Atmos. Meas. Tech., 14, 4279–4304, https://doi.org/10.5194/amt-14-4279-2021, https://doi.org/10.5194/amt-14-4279-2021, 2021
Short summary
Short summary
For understanding the sources and sinks of atmospheric CO2, measurement of stable isotopes has proven to be highly valuable. We present a new method using laser absorption spectroscopy to simultaneously conduct measurements of three CO2 isotopes, directly on dry-air samples. This new method reduces sample preparation time significantly, compared to the conventional method in which measurements are conducted on pure CO2, and avoids measurement biases introduced by CO2 extraction.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021, https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021, https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. It combines a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED instrumental setup, limits of detection, and elemental performance are presented and discussed. Two measurement case studies are reported: one in a Finnish boreal forest and the other based on an aircraft campaign.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Natalie I. Keehan, Bellamy Brownwood, Andrey Marsavin, Douglas A. Day, and Juliane L. Fry
Atmos. Meas. Tech., 13, 6255–6269, https://doi.org/10.5194/amt-13-6255-2020, https://doi.org/10.5194/amt-13-6255-2020, 2020
Short summary
Short summary
This paper describes a new instrument (a thermal-dissociation–cavity ring-down spectrometer, TD-CRDS) for the measurement of key atmospheric gaseous and particle-phase molecules containing the nitrate functional group. Several operational considerations affecting the measurements are described, as well as several characterization experiments comparing the TD-CRDS measurements to analogous measurements from other instruments. Examples are given using a TD-CRDS for ambient and laboratory studies.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Daniel Marno, Cheryl Ernest, Korbinian Hens, Umar Javed, Thomas Klimach, Monica Martinez, Markus Rudolf, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 13, 2711–2731, https://doi.org/10.5194/amt-13-2711-2020, https://doi.org/10.5194/amt-13-2711-2020, 2020
Short summary
Short summary
In this study, a calibration device for OH and HO2 instruments is characterized at pressures of 275 to 1000 mbar, allowing instrument pressure sensitivity to be quantified to an accuracy of 22 % (1σ). Computational fluid dynamic simulations supporting the understanding of interactions between generated HOx and the instrument inlet led to enhanced determination of factors affecting instrument sensitivity.
Joschka Pfeifer, Mario Simon, Martin Heinritzi, Felix Piel, Lena Weitz, Dongyu Wang, Manuel Granzin, Tatjana Müller, Steffen Bräkling, Jasper Kirkby, Joachim Curtius, and Andreas Kürten
Atmos. Meas. Tech., 13, 2501–2522, https://doi.org/10.5194/amt-13-2501-2020, https://doi.org/10.5194/amt-13-2501-2020, 2020
Short summary
Short summary
Ammonia is an important atmospheric trace gas that affects secondary aerosol formation and, together with sulfuric acid, the formation of new particles. A measurement technique is presented that uses high-resolution mass spectrometry and protonated water clusters for the ultrasensitive detection of ammonia at single-digit parts per trillion by volume levels. The instrument is further capable of measuring amines and a suite of iodine compounds at sub-parts per trillion by volume levels.
Roberto Sommariva, Louisa J. Kramer, Leigh R. Crilley, Mohammed S. Alam, and William J. Bloss
Atmos. Meas. Tech., 13, 1655–1670, https://doi.org/10.5194/amt-13-1655-2020, https://doi.org/10.5194/amt-13-1655-2020, 2020
Short summary
Short summary
Ozone is a key atmospheric pollutant formed through chemical processing of natural and anthropogenic emissions and removed by reaction with organic compounds emitted by plants. We describe a new instrument – the
Total Ozone Reactivity Systemor TORS – that measures the total loss of ozone in the troposphere. The objective of the TORS instrument is to provide an estimate of the organic compounds emitted by plants which are not measured and thus to improve our understanding of the ozone budget.
John W. Birks, Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Stanley Strunk, Brian Carpenter, and Christine A. Ennis
Atmos. Meas. Tech., 13, 1001–1018, https://doi.org/10.5194/amt-13-1001-2020, https://doi.org/10.5194/amt-13-1001-2020, 2020
Short summary
Short summary
We describe a portable calibration source of nitric oxide (NO) based on the photolysis of nitrous oxide. Combining this with a previous photolytic ozone (O3) source yields a calibrator that produces known mixing ratios of NO, O3, and nitrogen dioxide (NO2); NO2 is produced by the reaction of NO with O3. This portable
NO2/NO/O3 calibration source requires no external gas cylinders and can be used as a standard to calibrate O3 and NOx air pollution monitors in the field.
Thomas H. Speak, Mark A. Blitz, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 13, 839–852, https://doi.org/10.5194/amt-13-839-2020, https://doi.org/10.5194/amt-13-839-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Ece Satar, Peter Nyfeler, Bernhard Bereiter, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 101–117, https://doi.org/10.5194/amt-13-101-2020, https://doi.org/10.5194/amt-13-101-2020, 2020
Short summary
Short summary
Good-quality measurements of atmospheric trace gases are only possible with regular calibrations and stable measurements from the standard cylinders. This study investigates instabilities due to surface effects on newly built aluminum and steel cylinders. We present measurements over a set of temperature and pressure ranges for the amount fractions of CO2, CO, CH4 and H2O using a commercial and a novel laser spectroscopic analyzer.
Ece Satar, Peter Nyfeler, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 119–130, https://doi.org/10.5194/amt-13-119-2020, https://doi.org/10.5194/amt-13-119-2020, 2020
Short summary
Short summary
To ensure the best preparation and measurement conditions for trace gases, usage of coated materials is in demand in gas metrology and atmospheric measurement communities. In this article, the previously introduced aluminum measurement chamber is used to investigate materials such as glass, aluminum, copper, brass, steel and three different commercially available coatings. Our measurements focus on temperature and pressure dependencies for the species CO2, CO, CH4 and H2O using a CRDS analyzer.
Tanja J. Schuck, Ann-Katrin Blank, Elisa Rittmeier, Jonathan Williams, Carl A. M. Brenninkmeijer, Andreas Engel, and Andreas Zahn
Atmos. Meas. Tech., 13, 73–84, https://doi.org/10.5194/amt-13-73-2020, https://doi.org/10.5194/amt-13-73-2020, 2020
Short summary
Short summary
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios at altitude. We present results on the stability of 28 halocarbons during storage of air samples collected in stainless-steel flasks inside an automated air sampling unit which is part of the CARIBIC instrument package. Selected fluorinated compounds grew during the experiments while short-lived compounds were depleted. Individual substances were additionally influenced by high mixing ratios of ozone.
Cited articles
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491–1511, https://doi.org/10.5194/amt-5-1491-2012, 2012. a, b, c, d
Allan, D. W.: Statistics of atomic frequency standards, Proc. IEEE, 54, 221–230, https://doi.org/10.1109/PROC.1966.4634, 1966. a
Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C., and Sato, P.: The stability and calibration of water vapor isotope ratio measurements during long-term deployments, Atmos. Meas. Tech., 8, 4521–4538, https://doi.org/10.5194/amt-8-4521-2015, 2015. a
Bailey, A., Aemisegger, F., Villiger, L., Los, S. A., Reverdin, G., Quiñones Meléndez, E., Acquistapace, C., Baranowski, D. B., Böck, T., Bony, S., Bordsdorff, T., Coffman, D., de Szoeke, S. P., Diekmann, C. J., Dütsch, M., Ertl, B., Galewsky, J., Henze, D., Makuch, P., Noone, D., Quinn, P. K., Rösch, M., Schneider, A., Schneider, M., Speich, S., Stevens, B., and Thompson, E. J.: Isotopic measurements in water vapor, precipitation, and seawater during EUREC4A, Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, 2023. a
Bastrikov, V., Steen-Larsen, H. C., Masson-Delmotte, V., Gribanov, K., Cattani, O., Jouzel, J., and Zakharov, V.: Continuous measurements of atmospheric water vapour isotopes in western Siberia (Kourovka), Atmos. Meas. Tech., 7, 1763–1776, https://doi.org/10.5194/amt-7-1763-2014, 2014. a
Bonne, J.-L., Masson-Delmotte, V., Cattani, O., Delmotte, M., Risi, C., Sodemann, H., and Steen-Larsen, H. C.: The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland, Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, 2014. a, b, c
Bonne, J.-L., Behrens, M., Meyer, H., Kipfstuhl, S., Rabe, B., Schönicke, L., Steen-Larsen, H. C., and Werner, M.: Resolving the controls of water vapour isotopes in the Atlantic sector, Nat. Commun., 10, 1632, https://doi.org/10.1038/s41467-019-09242-6, 2019. a
Casado, M., Landais, A., Masson-Delmotte, V., Genthon, C., Kerstel, E., Kassi, S., Arnaud, L., Picard, G., Prie, F., Cattani, O., Steen-Larsen, H.-C., Vignon, E., and Cermak, P.: Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau, Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, 2016. a
Dassié, E. P., Genty, D., Noret, A., Mangenot, X., Massault, M., Lebas, N., Duhamel, M., Bonifacie, M., Gasparrini, M., Minster, B., and Michelot, J.-L.: A Newly Designed Analytical Line to Examine Fluid Inclusion Isotopic Compositions in a Variety of Carbonate Samples, Geochem. Geophy. Geosy., 19, 1107–1122, 2018. a, b, c
de Graaf, S., Vonhof, H. B., Weissbach, T., Wassenburg, J. A., Levy, E. J., Kluge, T., and Haug, G. H.: A comparison of isotope ratio mass spectrometry and cavity ring-down spectroscopy techniques for isotope analysis of fluid inclusion water., Rapid Commun. Mass Sp., 34, e8837, https://doi.org/10.1002/rcm.8837, 2020. a, b, c, d, e, f, g, h, i
de Graaf, S., Vonhof, H. B., Levy, E. J., Markowska, M., and Haug, G. H.: Isotope ratio infrared spectroscopy analysis of water samples without memory effects, Rapid Commun. Mass Sp., 35, e9055, https://doi.org/10.1002/rcm.9055, 2021. a
Fernandez, A., Løland, M. H., Maccali, J., Krüger, Y., Vonhof, H. B., Sodemann, H., and Meckler, A. N.: Characterization and Correction of Evaporative Artifacts in Speleothem Fluid Inclusion Isotope Analyses as Applied to a Stalagmite From Borneo, Geochem. Geophy., Geosy., 24, e2023GC010857, https://doi.org/10.1029/2023GC010857, 2023. a
Fleitmann, D., Burns, S. J., Neff, U., Mangini, A., and Matter, A.: Changing moisture sources over the last 330 000 years in Northern Oman from fluid-inclusion evidence in speleothems, Quaternary Res., 60, 223–232, 2003. a
Gkinis, V., Popp, T. J., Johnsen, S. J., and Blunier, T.: A continuous stream flash evaporator for the calibration of an IR cavity ring-down spectrometer for the isotopic analysis of water, Isot. Environ. Healt. S., 46, 463–475, https://doi.org/10.1080/10256016.2010.538052, 2010. a
Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain, Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, 2019. a
Gupta, P., Noone, D., Galewsky, J., Sweeney, C., and Vaughn, B. H.: Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology, Rapid Commun. Mass Sp., 23, 2534–2542, 2009. a
Horita, J., Rozanski, K., and Cohen, S.: Isotope effects in the evaporation of water: a status report of the Craig-Gordon model, Isot. Environ. Healt. S., 44, 23–49, 2008. a
IAEA (INTERNATIONAL ATOMIC ENERGY AGENCY): Reference Sheet for VSMOW2 and SLAP2 International Measurement Standards. IAEA, Vienna, 8 pp., https://nucleus.iaea.org/sites/ReferenceMaterials/Shared Documents/ReferenceMaterials/StableIsotopes/VSMOW2/VSMOW2_SLAP2.pdf (last access: 29 October 2023), 2017. a
Iannone, R. Q., Romanini, D., Kassi, S., Meijer, H. A. J., and Kerstel, E. R. T.: A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer, J. Atmos. Ocean. Tech., 26, 1275–1288, 2009. a
Jones, T. R., White, J. W. C., Steig, E. J., Vaughn, B. H., Morris, V., Gkinis, V., Markle, B. R., and Schoenemann, S. W.: Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores, Atmos. Meas. Tech., 10, 617–632, https://doi.org/10.5194/amt-10-617-2017, 2017. a
Kerstel, E. R. T., Iannone, R. Q., Chenevier, M., Kassi, S., Jost, H. J., and Romanini, D.: A water isotope (H-2, O-17, and O-18) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications, Appl. Phys. B-Lasers O., 85, 397–406, 2006. a
Lee, X., Sargent, S., Smith, R., and Tanner, B.: In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications, J. Atmos. Ocean. Tech., 22, 555–565, 2005. a
Lis, G., Wassenaar, L. I., and Hendry, M. J.: High-Precision Laser Spectroscopy D/H and 18O/16O Measurements of Microliter Natural Water Samples, Anal. Chem., 80, 287–293, https://doi.org/10.1021/ac701716q, 2007. a
Maccali, J., Meckler, A. N., Lauritzen, S.-E., Brekken, T., Rokkan, H. A., Fernandez, A., Krüger, Y., Adigun, J., Affolter, S., and Leuenberger, M.: Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa, Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, 2023. a
McGarry, S., Bar-Matthews, M., Matthews, A., Vaks, A., Schilman, B., and Ayalon, A.: Constraints on hydrological and paleotemperature variations in the Eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions, Quaternary Sci. Rev., 23, 919–934, 2004. a
Meckler, A. N., Affolter, S., Dublyansky, Y. V., Krüger, Y., Vogel, N., Bernasconi, S. M., Frenz, M., Kipfer, R., Leuenberger, M., Spötl, C., Carolin, S., Cobb, K. M., Moerman, J., Adkins, J. F., and Fleitmann, D.: Glacial–interglacial temperature change in the tropical West Pacific: A comparison of stalagmite-based paleo-thermometers, Quarternary Sci. Rev., 127, 90–116, 2015. a
Sayres, D. S., Moyer, E. J., Hanisco, T. F., St Clair, J. M., Keutsch, F. N., O'Brien, A., Allen, N. T., Lapson, L., Demusz, J. N., Rivero, M., Martin, T., Greenberg, M., Tuozzolo, C., Engel, G. S., Kroll, J. H., Paul, J. B., and Anderson, J. G.: A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere, Rev. Sci. Instrum., 80, 044102, https://doi.org/10.1063/1.3117349, 2009. a
Seidl, A. W., Sodemann, H., and Steen-Larsen, H. C.: A modular field system for near-surface, vertical profiling of the atmospheric composition in harsh environments using cavity ring-down spectroscopy, Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, 2023. a
Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., Graf, P., Hankers, R., Hsiao, G., Schulz, H., Wieser, A., and Wernli, H.: The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights, Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, 2017. a, b
St Clair, J. M., Hanisco, T. F., Weinstock, E. M., Moyer, E. J., Sayres, D. S., Keutsch, F. N., Kroll, J. H., Demusz, J. N., Allen, N. T., Smith, J. B., Spackman, J. R., and Anderson, J. G.: A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere, Rev. Sci. Instrum., 79, 064101, https://doi.org/10.1063/1.2940221, 2008. a, b, c
Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, 2013. a, b, c
Steig, E. J., Gkinis, V., Schauer, A. J., Schoenemann, S. W., Samek, K., Hoffnagle, J., Dennis, K. J., and Tan, S. M.: Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance, Atmos. Meas. Tech., 7, 2421–2435, https://doi.org/10.5194/amt-7-2421-2014, 2014. a
Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H. C., Toffoli, A., Wernli, H., and Aemisegger, F.: Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean, Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, 2020. a, b, c
van Geldern, R. and Barth, J. A. C.: Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS), Limnol. Oceanogr.-Meth., 10, 1024–1036, 2012. a
Weissbach, T.: Spectroscopic isotope ratio analysis on speleothem fluid inclusions – analytics and paleoclimatic case studies, PhD thesis, University of Heidelberg, https://doi.org/10.11588/heidok.00028559, 2020. a
Weissbach, T., Kluge, T., Affolter, S., Leuenberger, M. C., Vonhof, H., Riechelmann, D. F., Fohlmeister, J., Juhl, M.-C., Hemmer, B., Wu, Y., Warken, S. F., Schmidt, M., Frank, N., and Aeschbach, W.: Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques, Chem. Geol., 617, 121268, https://doi.org/10.1016/j.chemgeo.2022.121268, 2023. a
Weng, Y., Touzeau, A., and Sodemann, H.: Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers, Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
We describe a device that allows one to produce a continuous stream of water vapour with a...