Articles | Volume 17, issue 12
https://doi.org/10.5194/amt-17-3783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-3783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
Laura D. Riihimaki
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
John Wood
Peak Design Ltd, Sunnybank House, Wensley Rd, Winster, Derbyshire, DE4 2DH, UK
Connor Flynn
School of Meteorology, University of Oklahoma, Norman, OK, USA
Adam Theisen
Argonne National Laboratory, Lemont, IL, USA
Michael Ritsche
Argonne National Laboratory, Lemont, IL, USA
Lynn Ma
Brookhaven National Laboratory, Upton, NY, USA
Gary B. Hodges
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
Christian Herrera
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
Related authors
No articles found.
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3197, https://doi.org/10.5194/egusphere-2024-3197, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tiny atmospheric particles from wildfire smoke impact climate by interacting with sunlight and clouds, the extent of which is uncertain due to gaps in understanding how smoke changes over time. We developed a new method using remote sensing instruments to track how these particles evolve during atmospheric transport. Our results show that the ability of these particles to absorb sunlight increased as they travel. This discovery could help improve predictions of future climate scenarios.
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024, https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
Short summary
Conventional ground-based radiometers commonly measure solar radiation at a few wavelengths within a narrow spectral range. These limitations prevent improved retrievals of aerosol, cloud, and surface characteristics. To address these limitations, an advanced ground-based radiometer with expanded spectral coverage and hyperspectral capability is introduced. Its good performance is demonstrated using reference data collected over three coastal regions with diverse types of aerosols and clouds.
Hiren T. Jethva, Omar Torres, Richard A. Ferrare, Sharon P. Burton, Anthony L. Cook, David B. Harper, Chris A. Hostetler, Jens Redemann, Vinay Kayetha, Samuel LeBlanc, Kristina Pistone, Logan Mitchell, and Connor J. Flynn
Atmos. Meas. Tech., 17, 2335–2366, https://doi.org/10.5194/amt-17-2335-2024, https://doi.org/10.5194/amt-17-2335-2024, 2024
Short summary
Short summary
We introduce a novel synergy algorithm applied to ORALCES airborne measurements of above-cloud aerosol optical depth and UV–Vis satellite observations from OMI and MODIS to retrieve spectral aerosol single-scattering albedo of lofted layers of carbonaceous smoke aerosols over clouds. The development of the proposed aerosol–cloud algorithm implies a possible synergy of CALIOP and OMI–MODIS passive sensors to deduce a global product of AOD and SSA of absorbing aerosols above clouds.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys., 23, 4221–4246, https://doi.org/10.5194/acp-23-4221-2023, https://doi.org/10.5194/acp-23-4221-2023, 2023
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport event influences on aerosol physical properties and the cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at the ENA is successively assessed.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Adam Theisen, Max Ungar, Bryan Sheridan, and Bradley G. Illston
Atmos. Meas. Tech., 13, 4699–4713, https://doi.org/10.5194/amt-13-4699-2020, https://doi.org/10.5194/amt-13-4699-2020, 2020
Short summary
Short summary
A low-cost weather station with 3D-printed components was built, based on the UCAR 3D-PAWS project, and deployed alongside an Oklahoma Mesonet station for an 8-month study to determine the longevity of these sensors and their performance compared with standard commercial sensors. Results show that the low-cost sensors can perform as well as the more expensive commercial ones for short-term deployments with the possibility for long-term deployments with proper maintenance and replacement.
Francesca Gallo, Janek Uin, Stephen Springston, Jian Wang, Guangjie Zheng, Chongai Kuang, Robert Wood, Eduardo B. Azevedo, Allison McComiskey, Fan Mei, Adam Theisen, Jenni Kyrouac, and Allison C. Aiken
Atmos. Chem. Phys., 20, 7553–7573, https://doi.org/10.5194/acp-20-7553-2020, https://doi.org/10.5194/acp-20-7553-2020, 2020
Short summary
Short summary
Continuous high-time-resolution ambient data can include periods when aerosol properties do not represent regional aerosol processes due to high-concentration local events. We develop a novel aerosol mask at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) facility in the eastern North Atlantic (ENA). We use two ground sites to validate the mask, include a comparison with aircraft overflights, and provide guidance to increase data quality at ENA and other locations.
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020, https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Short summary
Discrepancies in hourly shallow cumuli cover estimates can be substantial. Instrument detection differences contribute to long-term bias in shallow cumuli cover estimates, whereas narrow field-of-view configurations impact measurement uncertainty as averaging time decreases. A new tool is introduced to visually assess both impacts on sub-hourly cloud cover estimates. Accurate shallow cumuli cover estimation is needed for model–observation comparisons and studying cloud-surface interactions.
Qi Tang, Stephen A. Klein, Shaocheng Xie, Wuyin Lin, Jean-Christophe Golaz, Erika L. Roesler, Mark A. Taylor, Philip J. Rasch, David C. Bader, Larry K. Berg, Peter Caldwell, Scott E. Giangrande, Richard B. Neale, Yun Qian, Laura D. Riihimaki, Charles S. Zender, Yuying Zhang, and Xue Zheng
Geosci. Model Dev., 12, 2679–2706, https://doi.org/10.5194/gmd-12-2679-2019, https://doi.org/10.5194/gmd-12-2679-2019, 2019
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
John Wood, Tim J. Smyth, and Victor Estellés
Atmos. Meas. Tech., 10, 1723–1737, https://doi.org/10.5194/amt-10-1723-2017, https://doi.org/10.5194/amt-10-1723-2017, 2017
Short summary
Short summary
We have developed an instrument which can be deployed on ships in the remote oceans to measure optical properties of the atmosphere. These optical properties are key to understanding how light and heat are transmitted, absorbed and reflected within the atmosphere. This has consequences for how the wider climate system works. The oceans, covering 70 % of the planet, are chronically under-sampled for such optical properties. Such instruments, when widely deployed, should help rectify this problem.
Laura D. Riihimaki, Jennifer M. Comstock, Kevin K. Anderson, Aimee Holmes, and Edward Luke
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 49–62, https://doi.org/10.5194/ascmo-2-49-2016, https://doi.org/10.5194/ascmo-2-49-2016, 2016
Short summary
Short summary
Between atmospheric temperatures of 0 and −38 °C, clouds contain ice crystals, super-cooled liquid droplets, or a mixture of both, impacting how they influence the atmospheric energy budget and challenging our ability to simulate climate change. Better cloud-phase measurements are needed to improve simulations. We demonstrate how a Bayesian method to identify cloud phase can improve on currently used methods by including information from multiple measurements and probability estimates.
J. Badosa, J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin
Atmos. Meas. Tech., 7, 4267–4283, https://doi.org/10.5194/amt-7-4267-2014, https://doi.org/10.5194/amt-7-4267-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
A Novel Assessment of the Vertical Velocity Correction for Non-orthogonal Sonic Anemometers
Method development and application for the analysis of chiral organic marker species in ice-cores
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Introducing the Video In Situ Snowfall Sensor (VISSS)
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
A new reference-quality precipitation gauge wind shield
Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation
Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures
A new accurate low-cost instrument for fast synchronized spatial measurements of light spectra
Drone-based meteorological observations up to the tropopause – a concept study
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
New Absolute Cavity Pyrgeometer equation by application of Kirchhoff's law and adding a convection term
The DataHawk2 uncrewed aircraft system for atmospheric research
The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural environment
ICE-CAMERA: a flatbed scanner to study inland Antarctic polar precipitation
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems
Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer
Infrasound measurement system for real-time in situ tornado measurements
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
On the quality of RS41 radiosonde descent data
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Use of thermal signal for the investigation of near-surface turbulence
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Ground mobile observation system for measuring multisurface microwave emissivity
A differential emissivity imaging technique for measuring hydrometeor mass and type
Effect of snow-covered ground albedo on the accuracy of air temperature measurements
Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer
The INFRA-EAR: a low-cost mobile multidisciplinary measurement platform for monitoring geophysical parameters
A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions
Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements
The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Identification of platform exhaust on the RV Investigator
Evaluation of Windsond S1H2 performance in Kumasi during the 2016 DACCIWA field campaign
Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer
Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems
New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns
Is it feasible to estimate radiosonde biases from interlaced measurements?
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-152, https://doi.org/10.5194/amt-2024-152, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Sonic anemometers measure wind velocity in three dimensions. It is used worldwide to help assess the trace gas exchange, critical to understanding climate change. However, their physical framework interferes with the flow they measure. We present a new way to correct measurements from sonic anemometers of several types. The method uses measurements of vertical wind velocity and other turbulent velocities, compares their ratios, and from this yields correction factors for sonic anemometers.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243, https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a 2-dimensional liquid chromatography method to determine the chiral ratios of monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024, https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024, https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Short summary
This work summarizes measurements conducted in June 2021 using a small, uncrewed, stratospheric glider that was launched from a weather balloon to altitudes up to 30 km above sea level. The aircraft conducted measurements of wind speed and direction, pressure, temperature, and humidity during its descent as well as measurements of infrasonic sound levels. These data were used to evaluate the atmospheric turbulence observed during the descent phase of the flight.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024, https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Short summary
Accuracy is important in wind speed measurements with cup anemometers. Dynamic overspeeding is historically considered an inherent and significant error, supported by a two-cup drag model. But lower (and even zero) overspeeding might be present for low-to-medium turbulence intensities for conical cups with short arms. A parabolic torque model reveals various dynamic overspeeding characteristics of cup anemometers, but modelling of actual cup anemometers is best made with tabulated data.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023, https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
Short summary
Unoccupied aerial vehicles (UAVs) provide a versatile platform for eddy covariance (EC) flux measurements at regional scales with low cost, transport, and infrastructural requirements. This study evaluates the measurement performance in the wind field and turbulent flux of a UAV-based EC system based on the data from a set of calibration flights and standard operational flights and concludes that the system can measure the georeferenced wind vector and turbulent flux with sufficient precision.
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Short summary
A new wind shield has been designed to reduce the effects of precipitation gauge undercatch. Tested at three separate sites, it compared well to a well-established refence-quality precipitation wind shield. The new wind shield is smaller and more durable than other reference-quality shields, and it was designed for use in operational weather and climate networks.
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023, https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Short summary
Weather forecasters around the world use uncrewed balloons to measure wind and temperature for their weather models. In these measurements, wind is recorded from the shift of the balloon by the moving air. However, the balloons and the measurement devices also move by themselves in still air. This creates artificial wind measurements that are normally removed from the data. We show new techniques to avoid these movements and increase the altitude resolution of the wind measurement by 6 times.
Bert G. Heusinkveld, Wouter B. Mol, and Chiel C. van Heerwaarden
Atmos. Meas. Tech., 16, 3767–3785, https://doi.org/10.5194/amt-16-3767-2023, https://doi.org/10.5194/amt-16-3767-2023, 2023
Short summary
Short summary
This paper presents a new instrument for fast measurements of solar irradiance in 18 wavebands (400–950 nm): GPS perfectly synchronizes 10 Hz measurement speed to universal time, low-cost (< EUR 200) complete standalone solution for realizing dense measurement grids to study cloud-shading dynamics, 940 nm waveband reveals atmospheric moisture column information, 11 wavebands to study photosynthetic active radiation and light interaction with vegetation, and good reflection spectra performance.
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023, https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023, https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Short summary
Measurements of the broadband radiative energy budget from aircraft are needed to study the effect of clouds, aerosol particles, and surface conditions on the Earth's energy budget. However, the moving aircraft introduces challenges to the instrument performance and post-processing of the data. This study introduces a new radiometer package, outlines a greatly simplifying method to correct thermal offsets, and provides exemplary measurements of solar and thermal–infrared irradiance.
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023, https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
Short summary
In this study, we compute the distributed sensible heat flux using a distributed temperature sensing technique, whose magnitude, sign, and temporal dynamics compare reasonably well to estimates from classical eddy covariance measurements from sonic anemometry. Despite the remaining uncertainty in computed fluxes, the results demonstrate the potential of the novel method to compute spatially resolving sensible heat flux measurement and encourage further research.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022, https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary
Short summary
The DataHawk2 is a small, low-cost, rugged, uncrewed aircraft system (UAS) used to observe the thermodynamic and turbulence structures of the lower atmosphere, supporting an advanced understanding of the physical processes that regulate weather and climate. This paper discusses the development, performance, and sensing capabilities of the DataHawk2 using data collected during several recent field deployments.
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022, https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary
Short summary
This research investigates the measurement of atmospheric turbulence using a low-cost instrumented car that travels at near-highway speeds and is impacted by upwind obstructions and other on-road traffic. We show that our car design can successfully measure the mean flow and atmospheric turbulence near the surface. We outline a technique to isolate and remove the effects of sporadic passing traffic from car-measured velocity variances and discuss potential measurement uncertainties.
Massimo Del Guasta
Atmos. Meas. Tech., 15, 6521–6544, https://doi.org/10.5194/amt-15-6521-2022, https://doi.org/10.5194/amt-15-6521-2022, 2022
Short summary
Short summary
Any instrument on the Antarctic plateau must cope with a harsh environment. Concordia station is a special place for testing new instruments. With low temperatures and weak winds, precipitation can be studied by simply collecting it on horizontal surfaces. This is typically done manually. ICE-CAMERA is intended as an automatic alternative. The combined construction of rugged equipment for taking photographs of particles and the adoption of machine learning techniques have served this purpose.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Abhiram Doddi, Dale Lawrence, David Fritts, Ling Wang, Thomas Lund, William Brown, Dragan Zajic, and Lakshmi Kantha
Atmos. Meas. Tech., 15, 4023–4045, https://doi.org/10.5194/amt-15-4023-2022, https://doi.org/10.5194/amt-15-4023-2022, 2022
Short summary
Short summary
Small-scale turbulent structures are ubiquitous in the atmosphere, yet our understanding of their structure and dynamics is vastly incomplete. IDEAL aimed to improve our understanding of small-scale turbulent flow features in the lower atmosphere. A small, unmanned, fixed-wing aircraft was employed to make targeted observations of atmospheric columns. Measured data were used to guide atmospheric model simulations designed to describe the structure and dynamics of small-scale turbulence.
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022, https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Short summary
Tornadic storms have been hypothesized to emit sound at frequencies below human hearing which animals and certain microphones can detect. This study covers the design, fabrication, and deployment of a specialized microphone that can be carried by first responders and storm chasers. The study also presents real-time processing methods, analyzes several recorded severe weather events including a tornado, and introduces a real-time web interface to allow for live monitoring of the mobile sensor.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021, https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Short summary
Monte Carlo simulations are used to establish baseline precipitation measurement uncertainties according to World Meteorological Organization standards. Measurement accuracy depends on instrument sampling area, time interval, and precipitation rate. Simulations are compared with field measurements taken by an emerging hotplate precipitation sensor. We find that the current collection area is sufficient for light rain, but a larger collection area is required to detect moderate to heavy rain.
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021, https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021, https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.
Wenying He, Hongbin Chen, Yuejian Xuan, Jun Li, Minzheng Duan, and Weidong Nan
Atmos. Meas. Tech., 14, 7069–7078, https://doi.org/10.5194/amt-14-7069-2021, https://doi.org/10.5194/amt-14-7069-2021, 2021
Short summary
Short summary
Large microwave surface emissivities (ε) cause difficulties in widely using satellite microwave data over land. Usually, ground-based radiometers are fixed to a scan field to obtain the temporal evolution of ε over a single land-cover area. To obtain the long-term temporal evolution of ε over different land-cover surfaces simultaneously, we developed a ground mobile observation system to enhance in situ ε observations and presented some preliminary results.
Dhiraj K. Singh, Spencer Donovan, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 6973–6990, https://doi.org/10.5194/amt-14-6973-2021, https://doi.org/10.5194/amt-14-6973-2021, 2021
Short summary
Short summary
This paper describes a new instrument for quantifying the physical characteristics of hydrometeors such as snow and rain. The device can measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. The instrument is called the Differential Emissivity Imaging Disdrometer (DEID) and is composed of a thermal camera and hotplate. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm.
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Olivier F. C. den Ouden, Jelle D. Assink, Cornelis D. Oudshoorn, Dominique Filippi, and Läslo G. Evers
Atmos. Meas. Tech., 14, 3301–3317, https://doi.org/10.5194/amt-14-3301-2021, https://doi.org/10.5194/amt-14-3301-2021, 2021
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, https://doi.org/10.5194/amt-14-1127-2021, 2021
Short summary
Short summary
Snow measurements are very sensitive to wind. Here, we compare airflow and snowfall simulations to Arctic observations for a Multi-Angle Snowflake Camera to show that measurements of fall speed, orientation, and size are accurate only with a double wind fence and winds below 5 m s−1. In this case, snowflakes tend to fall with a nearly horizontal orientation; the largest flakes are as much as 5 times more likely to be observed. Adjustments are needed for snow falling in naturally turbulent air.
Wei-Chun Hwang, Po-Hsiung Lin, and Hungjui Yu
Atmos. Meas. Tech., 13, 5395–5406, https://doi.org/10.5194/amt-13-5395-2020, https://doi.org/10.5194/amt-13-5395-2020, 2020
Short summary
Short summary
We have developed a small, light-weight (radiosonde of 20 g with battery), low-cost, and easy-to-use upper-air radiosonde system: the Storm Tracker. With the ability to receive multiple radiosondes simultaneously, the system enables high temporal and spatial resolution atmospheric observations. In the 2018 field campaign, the accuracy of the Storm tracker was tested using co-launched data with Vaisala RS41-SGP radiosondes, and the measurements show an overall good agreement.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, https://doi.org/10.5194/amt-13-2833-2020, 2020
Short summary
Short summary
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.
Thomas Kuhn and Sandra Vázquez-Martín
Atmos. Meas. Tech., 13, 1273–1285, https://doi.org/10.5194/amt-13-1273-2020, https://doi.org/10.5194/amt-13-1273-2020, 2020
Short summary
Short summary
Directly measured shape and fall speed are two important parameters needed for models and remote sensing. This can be done by the new Dual Ice Crystal Imager (D-ICI) instrument, which takes two high-resolution pictures of falling snow crystals from two different angles. Fall speed is measured by doubly exposing the side-view picture. Size and shape are determined from the second picture providing the top view of the snow crystal. D-ICI has been tested on the ground in Kiruna, northern Sweden.
Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison
Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019, https://doi.org/10.5194/amt-12-5845-2019, 2019
Short summary
Short summary
A new network of precipitation instruments has been established for the UK. The instruments are capable of detecting the fall velocity and diameter of each particle that falls through a laser beam. The particle characteristics are derived from the duration and amount of decrease in beam brightness as perceived by a receiving diode. A total of 14 instruments make up the network and all instruments upload 60 s frequency data in near-real time to a publicly available website with plots.
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Short summary
In this study, we introduce the new tethered balloon system BELUGA, which includes different modular instrument packages for measuring turbulence and radiation in the atmospheric boundary layer. BELUGA was deployed in an Arctic field campaign in 2017, providing details of boundary layer processes in combination with low-level clouds. Those processes are still not fully understood and in situ measurements in the Arctic improve our understanding of the Arctic response in terms of global warming.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019, https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Short summary
This paper presents the first performance assessment during a field campaign of a new reusable radiosonde: the Windsond S1H2. The reuse feature of the S1H2 requires evaluation of the data alteration due to sonde reuse in addition to performance and reproducibility assessments. A comparison with the Vaisala RS41-SG, a well-proven system, shows the potential of the S1H2, with no major performance degradation arising from S1H2 sonde reuse but shows the need for improving the S1H2 GPS system.
Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng
Atmos. Meas. Tech., 11, 5981–6002, https://doi.org/10.5194/amt-11-5981-2018, https://doi.org/10.5194/amt-11-5981-2018, 2018
Short summary
Short summary
The three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer was successfully recovered by developing equations, algorithms, and related software. Using two sets of geometry data from production calibration and return re-calibration, this algorithm can recover wind with/without transducer shadow correction and sonic temperature with crosswind correction, and then obtain fluxes at quality as expected. This study is applicable as a reference for related topics.
Brian R. Greene, Antonio R. Segales, Sean Waugh, Simon Duthoit, and Phillip B. Chilson
Atmos. Meas. Tech., 11, 5519–5530, https://doi.org/10.5194/amt-11-5519-2018, https://doi.org/10.5194/amt-11-5519-2018, 2018
Short summary
Short summary
With the recent commercial availability of rotary-wing unmanned aircraft systems (rwUAS), their ability to collect observations in the lower atmosphere is quickly being realized. However, integrating sensors with an rwUAS can introduce errors if not sited properly. This study discusses an objective method of determining some of these error sources in temperature, including improper airflow and rotary motor heating. Errors can be mitigated by mounting thermistors under propellers near the tips.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Cited articles
Alexandrov, M. D., Lacis, A. A., Carlson, B. E., and Cairns, B.: Remote sensing of atmospheric aerosols and trace gases by means of multifilter rotating shadowband radiometer. Part I: Retrieval algorithm, J. Atmos. Sci., 59, 524–543, https://doi.org/10.1175/1520-0469(2002)059<0524:RSOAAA>2.0.CO;2, 2002a.
Alexandrov, M. D., Lacis, A. A., Carlson, B. E., and Cairns, B.: Remote sensing of atmospheric aerosols and trace gases by means of multifilter rotating shadowband radiometer. Part II: Climatological applications, J. Atmos. Sci., 59, 544–566, https://doi.org/10.1175/1520-0469(2002)059<0544:RSOAAA>2.0.CO;2, 2002b.
Andreas, A., Dooraghi, M., Habte, A., Kutchenreiter, M., Reda, I., and Sangupta, M.: Solar Infrared Radiation Station (SIRS), Sky Radiation (SKYRAD), Ground Radiation (GNDRAD), and Broadband Radiometer Station (BRS) Instrument Handbook, edited by: Stafford, R., ARM Climate Research Facility, DOE/SC-ARM-TR-025, https://doi.org/10.2172/1432706, 2018.
ARM user facility: Hyperspectral radiometer (HSR1), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1888171, 2022.
Badosa, J., Wood, J., Blanc, P., Long, C. N., Vuilleumier, L., Demengel, D., and Haeffelin, M.: Solar irradiances measured using SPN1 radiometers: uncertainties and clues for development, Atmos. Meas. Tech., 7, 4267–4283, https://doi.org/10.5194/amt-7-4267-2014, 2014.
Chan, S. W. and Biraud, S. C.: Carbon Dioxide Flux Measurement System (CO2FLX) Instrument Handbook, edited by: Stafford, R., U.S. Department of Energy. DOE/SC-ARM/TR-048, https://doi.org/10.2172/1020279, 2022.
Ermold, B.: Ozone Monitoring Instrument (OMI), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1874262, 2004.
Ermold, B., Flynn, C. J., and Barnard, J.: Aerosol Optical Depth Value-Added Product for the SAS-He Instrument, Version 1.0. U.S. DOE, Office of Science, Office of Biological and Environmental Research, DOE/SC-ARM/TR-133, https://doi.org/10.2172/1226568, 2013.
Flynn, C. J.: Shortwave Array Spectroradiometer–Hemispheric (SASHe) Instrument Handbook, edited by: Stafford, R., DOE ARM Climate Research Facility, DOE/SC-ARM-TR-172, https://doi.org/10.2172/1251414, 2016.
García-Cabrera, R. D., Cuevas-Agulló, E., Barreto, Á., Cachorro, V. E., Pó, M., Ramos, R., and Hoogendijk, K.: Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation, Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, 2020.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Gregory, L., Sivaraman, C., Ma, L., and Wagener, R.: Sunphotometer (CSPHOTAODFILTQAV3), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1461660, 1994.
Gueymard, C. A.: The sun's total and spectral irradiance for solar energy applications and solar radiation models, Sol. Energy, 76, 423–453, https://doi.org/10.1016/J.SOLENER.2003.08.039, 2004.
Hansen, J. E. and Travis, L. D.: Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, https://doi.org/10.1007/BF00168069, 1974.
Harrison, L. and Michalsky, J.: Objective algorithms for the retrieval of optical depths from ground-based measurements, Appl. Optics, 33, 5126–5132, https://doi.org/10.1364/AO.33.005126, 1994.
Harrison, L., Michalsky, J., and Berndt, J.: Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements, Appl. Optics, 33, 5118–5125, https://doi.org/10.1364/AO.33.005118, 1994.
Harrison, L., Beauharnois, M., Berndt, J., Kiedron, P., Michalsky, J., and Min, Q.: The rotating shadowband spectroradiometer (RSS) at SGP, Geophys. Res. Lett., 26, 1715–1718, https://doi.org/10.1029/1999GL900328, 1999.
Hodges, G. B. and Michalsky, J. J.: Multifilter Rotating Shadowband Radiometer (MFRSR), Multifilter Radiometer (MFR), and Normal Incidence Multifilter Radiometer (NIMFR) Instrument Handbook, edited by: Stafford, R., DOE ARM Climate Research Facility, DOE/SC-ARM-TR-144, https://doi.org/10.2172/1251387, 2016.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Kasten, F. and Young, A. T.: Revised optical air mass tables and approximation formula, Appl. Optics, 28, 4735–4738, https://doi.org/10.1364/AO.28.004735, 1989.
Koontz, A., Hodges, G., Barnard, J., Flynn, C., and Michalsky, J.: Aerosol Optical Depth Value-Added Product Report, U.S. Department of Energy, DOE/SC-ARM/TR-129, https://doi.org/10.2172/1092419, 2013.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLXRAD4M), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1313017, 2016.
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., and Wargan, K.: The Ozone Monitoring Instrument: overview of 14 years in space, Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, 2018.
Long, C. N. and Ackerman, T. P.: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res.-Atmos., 105, 15609–15626, https://doi.org/10.1029/2000JD900077, 2000.
Long, C. N., Ackerman, T. P., Gaustad, K. L., and Cole, J. N. S.: Estimation of fractional sky cover from broadband shortwave radiometer measurements, J. Geophys. Res.-Atmos., 111, 11204, https://doi.org/10.1029/2005JD006475, 2006.
McComiskey, A. and Ferrare, R. A.: Aerosol Physical and Optical Properties and Processes in the ARM Program, Meteor. Mon., 57, 21.1–21.17, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0028.1, 2016.
Michalsky, J. J. and Kiedron, P. W.: Moderate spectral resolution solar irradiance measurements, aerosol optical depth, and solar transmission, from 360 to 1070 nm, using the refurbished rotating shadow band spectroradiometer (RSS), Atmos. Meas. Tech., 15, 353–364, https://doi.org/10.5194/amt-15-353-2022, 2022.
Michalsky, J. J. and Long, C. N.: ARM Solar and Infrared Broadband and Filter Radiometry, Meteor. Mon., 57, 16.1–16.15, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0031.1, 2016.
Michalsky, J. J., Liljegren, J. C., and Harrison, L. C.: A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site, J. Geophys. Res.-Atmos., 100, 25995–26003, https://doi.org/10.1029/95JD02706, 1995.
Min, Q., Wang, T., Long, C. N., and Duan, M.: Estimating fractional sky cover from spectral measurements, J. Geophys. Res.-Atmos., 113, D20208, https://doi.org/10.1029/2008JD010278, 2008.
Mõttus, M., Sulev, M., Baret, F., Lopez-Lozano, R., and Reinart, A.: Photosynthetically Active Radiation: Measurement and Modeling, in: Encyclopedia of Sustainability Science and Technology, edited by: Meyers, R. A., Springer, New York, 7902–7932, https://doi.org/10.1007/978-1-4419-0851-3_451, 2012.
Norgren, M. S., Wood, J., Schmidt, K. S., van Diedenhoven, B., Stamnes, S. A., Ziemba, L. D., Crosbie, E. C., Shook, M. A., Kittelman, A. S., LeBlanc, S. E., Broccardo, S., Freitag, S., and Reid, J. S.: Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer, Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, 2022.
Riihimaki, L., Zhang, D., and Gaustad, K.: Radiative Flux Analysis (RADFLUX1LONG), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1395159, 2020.
Riihimaki, L. D., Gaustad, K. L., and Long, C. N.: Radiative Flux Analysis (RADFLUXANAL) Value-Added Product: Retrieval of Clear-Sky Broadband Radiative Fluxes and Other Derived Values, edited by: Stafford, R., ARM user facility, DOE/SC-ARM-TR-228, https://doi.org/10.2172/1569477, 2019.
Riihimaki, L. D., Flynn, C., McComiskey, A., Lubin, D., Blanchard, Y., Chiu, J. C., Feingold, G., Feldman, D. R., Gristey, J. J., Herrera, C., Hodges, G., Kassianov, E., LeBlanc, S. E., Marshak, A., Michalsky, J. J., Pilewskie, P., Schmidt, S., Scott, R. C., Shea, Y., Thome, K., Wagener, R., and Wielicki, B.: The Shortwave Spectral Radiometer for Atmospheric Science: Capabilities and Applications from the ARM User Facility, B. Am. Meteorol. Soc., 102, E539–E554, https://doi.org/10.1175/BAMS-D-19-0227.1, 2021.
Shippert, T. and Shilling, J.: Aerosol Optical Depth (AOD) Derived from MFRSR Measurements (MFRSR7NCHAOD1MICH), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1756632, 2021.
Turner, D. D., Mlawer, E. J., and Revercomb, H. E.: Water Vapor Observations in the ARM Program, Meteor. Mon., 57, 13.1–13.18, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0025.1, 2016.
Wang, T. and Min, Q.: Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements, J. Geophys. Res.-Atmos., 113, D19203, https://doi.org/10.1029/2008JD009958, 2008.
Wood, J. G.: Solar Radiation Sensor, European patent EP1012633 filed 4 September 1998, International patent WO 1999/013359, 18 March 1999.
Wood, J., Smyth, T. J., and Estellés, V.: Autonomous marine hyperspectral radiometers for determining solar irradiances and aerosol optical properties, Atmos. Meas. Tech., 10, 1723–1737, https://doi.org/10.5194/AMT-10-1723-2017, 2017.
Short summary
A new hyperspectral radiometer (HSR1) was deployed and evaluated in the central United States (northern Oklahoma). The HSR1 total spectral irradiance agreed well with nearby existing instruments, but the diffuse spectral irradiance was slightly smaller. The HSR1-retrieved aerosol optical depth (AOD) also agreed well with other retrieved AODs. The HSR1 performance is encouraging: new hyperspectral knowledge is possible that could inform atmospheric process understanding and weather forecasting.
A new hyperspectral radiometer (HSR1) was deployed and evaluated in the central United States...