Articles | Volume 17, issue 17
https://doi.org/10.5194/amt-17-5201-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-5201-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-instrumental analysis of ozone vertical profiles and total columns in South America: comparison between subtropical and equatorial latitudes
Gabriela Dornelles Bittencourt
CORRESPONDING AUTHOR
National Institute for Space Research, INPE/COESU, Santa Maria, RS, Brazil
Hassan Bencherif
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
Damaris Kirsch Pinheiro
Post-Graduation Program in Meteorology, Federal University of Santa Maria, Santa Maria, RS, Brazil
Nelson Begue
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
Lucas Vaz Peres
Institute of Engineering and Geosciences, Federal University of Western Pará, Santarém, PA, Brazil
José Valentin Bageston
National Institute for Space Research, INPE/COESU, Santa Maria, RS, Brazil
Douglas Lima de Bem
Post-Graduation Program in Meteorology, Federal University of Santa Maria, Santa Maria, RS, Brazil
Francisco Raimundo da Silva
National Institute for Space Research, INPE/COENE, Natal, RN, Brazil
Tristan Millet
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Reunion Island, France
Related authors
Bibiana Lopes, Damaris Kirsch Pinheiro, Hassan Bencherif, Gabriela Dornelles Bittencourt, Lucas Vaz Peres, Jean-Maurice Cadet, Thierry Portafaix, and Nathalie Tissot Boiaski
EGUsphere, https://doi.org/10.5194/egusphere-2023-1474, https://doi.org/10.5194/egusphere-2023-1474, 2023
Preprint archived
Short summary
Short summary
This is a study of the climatology and behavior of UV radiation on the surface during events of secondary effects of the Antarctic ozone hole over south of Brazil. Considering all implications of excess exposure to UV radiation on the surface on human health it is important to know how much radiation the population is being exposed to during those events. Results showed that for each 1 % decrease in the ozone total column, the UV index tends to increase by 4 % in the region of study.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, Hassan Bencherif, Lucas Vaz Peres, Nelson Begue, José Valentin Bageston, Douglas Lima de Bem, Vagner Anabor, and Luiz Angelo Steffenel
EGUsphere, https://doi.org/10.5194/egusphere-2023-1471, https://doi.org/10.5194/egusphere-2023-1471, 2023
Preprint archived
Short summary
Short summary
The study examines ozone depletions at mid-latitudes in Brazil during austral spring Antarctic Ozone Hole influence events. The methodology applied used data from the total column ozone, vertical profile of the atmosphere, and reanalysis data to analyze the atmospheric dynamics. The main motivation of this work is to show how this important trace gas dynamically behaves in the atmosphere in the active period of the Antarctic Ozone Hole in regions of medium latitudes.
Gregori de Arruda Moreira, Hassan Bencherif, Tristan Millet, and Damaris Kirsch Pinheiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-3398, https://doi.org/10.5194/egusphere-2025-3398, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Tropopause temperature and height serve as key indicators of anthropogenic climate change. However, monitoring their variability remains challenging due to the sparse distribution of observation stations, particularly in the Southern Hemisphere. To address this, we compared temperature profiles from three datasets—SHADOZ, COSMIC-1, and MERRA-2—to assess their similarities and differences and to develop a refined dataset for trend analysis.
Marion Ranaivombola, Nelson Bègue, Lucas Vaz Peres, Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Gisèle Krysztofiak, Gwenaël Berthet, Fabrice Jegou, Stuart Piketh, and Hassan Bencherif
Atmos. Chem. Phys., 25, 3519–3540, https://doi.org/10.5194/acp-25-3519-2025, https://doi.org/10.5194/acp-25-3519-2025, 2025
Short summary
Short summary
From September to October 2022, the Biomass Burning Aerosol Campaign (BiBAC) in Kruger National Park revealed a significant aerosol loading linked to biomass burning activity, with southeastward transport over southern Africa and the southwestern Indian Ocean (SWIO) basin. The study revealed a predominance of biomass burning aerosols and two distinct transport mechanisms of aerosol plumes and CO, underscoring the importance of east-coast observations in understanding atmospheric dynamics.
Michaël Sicard, Alexandre Baron, Marion Ranaivombola, Dominique Gantois, Tristan Millet, Pasquale Sellitto, Nelson Bègue, Hassan Bencherif, Guillaume Payen, Nicolas Marquestaut, and Valentin Duflot
Atmos. Chem. Phys., 25, 367–381, https://doi.org/10.5194/acp-25-367-2025, https://doi.org/10.5194/acp-25-367-2025, 2025
Short summary
Short summary
This study quantifies the radiative impact over Réunion Island (21° S, 55° E) of the aerosols and water vapor injected into the stratosphere by the Hunga volcano in the South Pacific. The overall aerosol and water vapor impact on the Earth’s radiation budget for the whole period is negative (cooling, -0.82 ± 0.35 W m-2) and dominated by the aerosols. At the Earth’s surface, aerosols are the main drivers and produce a negative (cooling, -1.04 ± 0.36 W m-2) radiative impact.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nelson Bègue, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data, 16, 4137–4159, https://doi.org/10.5194/essd-16-4137-2024, https://doi.org/10.5194/essd-16-4137-2024, 2024
Short summary
Short summary
We describe three instruments that have been measuring interactions between aerosols (particles of various origin) and light over Réunion Island since 2012. Aerosols directly or indirectly influence the temperature in the atmosphere and can interact with clouds. Details are given on how we derived aerosol properties from our measurements and how we assessed the quality of our data before sharing them with the scientific community. A good correlation was found between the three instruments.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Jean-Marcel Rivonirina, Thierry Portafaix, Solofoarisoa Rakotoniaina, Béatrice Morel, Chao Tang, Kévin Lamy, Marie Lothon, Tom Toulouse, Olivier Liandrat, Solofo Rakotondraompiana, and Hassan Bencherif
EGUsphere, https://doi.org/10.5194/egusphere-2024-1827, https://doi.org/10.5194/egusphere-2024-1827, 2024
Short summary
Short summary
The lack of ground observation instruments and the vast ocean coverage make the Southwest Indian Ocean (SWIO) region difficult to access and poorly studied. For gathering ground-based camera information, satellite measurements have been used with the primary goal of characterizing both sites Saint-Denis of Reunion Island and Antananarivo Madagascar in terms of cloudiness. This study shows the particularity of each site and enhances our understanding of cloud properties, particularly in the SWIO.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2645, https://doi.org/10.5194/egusphere-2023-2645, 2023
Preprint withdrawn
Short summary
Short summary
The eruption of the Hunga Tonga volcano in January 2022 released substantial amounts of aerosols, sulfur dioxide, and water vapor into the stratosphere. Satellite and ground instruments followed the displacement of the volcanic aerosol plume and its impact on ozone levels over the Indian Ocean. Ozone data reveal the presence of a persistent ozone mini-hole structure from 17 January to 22 January, with most ozone depletion occurring within the ozone layer at the location of the aerosol plume.
Bibiana Lopes, Damaris Kirsch Pinheiro, Hassan Bencherif, Gabriela Dornelles Bittencourt, Lucas Vaz Peres, Jean-Maurice Cadet, Thierry Portafaix, and Nathalie Tissot Boiaski
EGUsphere, https://doi.org/10.5194/egusphere-2023-1474, https://doi.org/10.5194/egusphere-2023-1474, 2023
Preprint archived
Short summary
Short summary
This is a study of the climatology and behavior of UV radiation on the surface during events of secondary effects of the Antarctic ozone hole over south of Brazil. Considering all implications of excess exposure to UV radiation on the surface on human health it is important to know how much radiation the population is being exposed to during those events. Results showed that for each 1 % decrease in the ozone total column, the UV index tends to increase by 4 % in the region of study.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, Hassan Bencherif, Lucas Vaz Peres, Nelson Begue, José Valentin Bageston, Douglas Lima de Bem, Vagner Anabor, and Luiz Angelo Steffenel
EGUsphere, https://doi.org/10.5194/egusphere-2023-1471, https://doi.org/10.5194/egusphere-2023-1471, 2023
Preprint archived
Short summary
Short summary
The study examines ozone depletions at mid-latitudes in Brazil during austral spring Antarctic Ozone Hole influence events. The methodology applied used data from the total column ozone, vertical profile of the atmosphere, and reanalysis data to analyze the atmospheric dynamics. The main motivation of this work is to show how this important trace gas dynamically behaves in the atmosphere in the active period of the Antarctic Ozone Hole in regions of medium latitudes.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022, https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Short summary
The complexity of geophysics systems results in time series with fluctuations at all timescales. The analysis of their variability then consists in decomposing them into a set of basis signals. We developed here a new adaptive filtering method called empirical adaptive wavelet decomposition that optimizes the empirical-mode decomposition existing technique, overcoming its drawbacks using the rigour of wavelets as defined in the recently published empirical wavelet transform method.
Cited articles
Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. Roy. Meteor. Soc., 140, 1–21, https://doi.org/10.1002/qj.2132, 2014.
Antón, M., Loyola, D., López, M., Vilaplana, J. M., Bañón, M., Zimmer, W., and Serrano, A.: Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula, Ann. Geophys., 27, 1377–1386, https://doi.org/10.5194/angeo-27-1377-2009, 2009.
Bageston, J. V., Pinheiro, D., and Bittencourt, G.: Total Column Ozone in Santa Maria – Brazil, Zenodo [data set], https://doi.org/10.5281/zenodo.10019128, 2023.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999rg000073, 2001.
Bahramvash Shams, S., Walden, V. P., Hannigan, J. W., Randel, W. J., Petropavlovskikh, I. V., Butler, A. H., and de la Cámara, A.: Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2, Atmos. Chem. Phys., 22, 5435–5458, https://doi.org/10.5194/acp-22-5435-2022, 2022.
Bègue, N., Bencherif, H., Sivakumar, V., Kirgis, G., Mze, N., and Leclair de Bellevue, J.: Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E), Atmos. Chem. Phys., 10, 8563–8574, https://doi.org/10.5194/acp-10-8563-2010, 2010.
Bencherif, H., Diab, R. D., Portafaix, T., Morel, B., Keckhut, P., and Moorgawa, A.: Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa, Atmos. Chem. Phys., 6, 5121–5128, https://doi.org/10.5194/acp-6-5121-2006, 2006.
Bencherif, H., El Amraoui, L., Semane, N., Massart, S., Charyulu, D. V., Hauchecorne, A., and Peuch, V. H.: Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: stratospheric ozone distributions and tropic/mid-latitude exchange, Can. J. Phys., 85, 1287–1300, https://doi.org/10.1139/p07-143, 2007.
Bencherif, H., El Amraoui, L., Kirgis, G., Leclair De Bellevue, J., Hauchecorne, A., Mzé, N., Portafaix, T., Pazmino, A., and Goutail, F.: Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4° S, 70.3° E), Atmos. Chem. Phys., 11, 363–373, https://doi.org/10.5194/acp-11-363-2011, 2011.
Bencherif, H., Toihir, A., Mbatha, N., Sivakumar, V., and Du Preez, D.: Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa, Atmosphere, 11, 1216, https://doi.org/10.3390/atmos11111216, 2020.
Bencherif, H., Pinheiro, D. K., Delage, O., Millet, T., Peres, L. V., Bègue, N., Bittencourt, G., Martins, M. P. P., Raimundo da Silva, F., Steffenel, L. A., and Mbatha, N., Anabor, V.: Ozone Trend Analysis in Natal (5.4° S, 35.4° W, Brazil) Using Multilinear Regression and Empirical Decomposition Methods over 22 Years of Observations, Remote Sensing, 16, 208, https://doi.org/10.3390/rs16010208, 2024.
Bittencourt, G. D., Bresciani, C., Kirsch Pinheiro, D., Bageston, J. V., Schuch, N. J., Bencherif, H., Leme, N. P., and Vaz Peres, L.: A major event of Antarctic ozone hole influence in southern Brazil in October 2016: an analysis of tropospheric and stratospheric dynamics, Ann. Geophys., 36, 415–424, https://doi.org/10.5194/angeo-36-415-2018, 2018.
Bittencourt, G. D., Pinheiro, D. K., Bageston, J. V., Bencherif, H., Steffenel, L. A., and Vaz Peres, L.: Investigation of the behavior of the atmospheric dynamics during occurrences of the ozone hole's secondary effect in southern Brazil, Ann. Geophys., 37, 1049–1061, https://doi.org/10.5194/angeo-37-1049-2019, 2019.
Bresciani, C., Bittencourt, G. D., Bageston, J. V., Pinheiro, D. K., Schuch, N. J., Bencherif, H., Leme, N. P., and Peres, L. V.: Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data, Ann. Geophys., 36, 405–413, https://doi.org/10.5194/angeo-36-405-2018, 2018.
Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603, 1949.
Bukin, O. A., Suan An, N., Pavlov, A. N., Stolyarchuk, S. Y., and Shmirko, K. A.: Effect that Jet Streams Have on the Vertical Ozone Distribution and Characteristics of Tropopause Inversion Layer, Izv. Atmos. Ocean. Phy+, 47, 610–618, https://doi.org/10.1134/S0001433811050021, 2011.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014.
Chapman, S.: A Theory of Upper-Atmospheric Ozone, Mem. R. Meteorol. Soc., 3, 103–125, 1930.
Dawkins, E. C. M., Feofilov, A., Rezac, L., Kutepov, A. A., Janches, D., Hoffner, J., Chu, X., Lu, X., Mlynczak, M. G., and Russell III, J.: Validation of SABER V2.0 operational temperature data with ground-based lidars in the mesosphere-lower thermosphere region (75–105 km), J. Geophys. Res., 123, 9916–9934, https://doi.org/10.1029/2018JD028742, 2018.
Diab, R. D., Thompson, A. M., Mari, K., Ramsay, L., and Coetzee, G. J. R.: Tropospheric ozone climatology over Irene, South Africa, from 1990 to 1994 and 1998 to 2002, J. Geophys. Res., 109, D20301, https://doi.org/10.1029/2004JD004793, 2004.
Dobson, G. M. B., Kimball, H., and Kidson, E.: Observations of the amount of ozone in the earth's atmosphere, and its relation to other geophysical conditions. – Part IV, P. Roy. Soc. A Mat., 129, 411–433, https://doi.org/10.1098/rspa.1930.0165, 1930.
Du Preez, D. J., Bencherif, H., Portafaix, T., Lamy, K., and Wright, C. Y.: Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season, Atmosphere, 12, 132, https://doi.org/10.3390/atmos12020132, 2021.
Dutta, R., Sridharan, S., Meenakshi, S., Ojha, S., Hozumi, K., and Yatini, C. Y.: On the high percentage of occurrence of type-B 150-km echoes during the year 2019 and its relationship with mesospheric semi-diurnal tide and stratospheric ozone, Adv. Space Res., 69, 80–95, https://doi.org/10.1016/j.asr.2021.08.031, 2022.
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner, T.: The Extratropical Upper Troposphere and Lower Stratosphere, Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011.
Hadjinicolaou, P., Pyle, J. A., and Harris, N. R. P.: The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective, Geophys. Res. Lett., 32, L12821, https://doi.org/10.1029/2005GL022476, 2005.
Holton, J. R., Haynes, P. H., Mcintyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere Exchange, Rev. Geophys., 3, 403–439, https://doi.org/10.1029/95RG02097, 1995.
Joshi, V., Sharma, S., Kumard, K. N., Patel, N., Kumar, P., Bencherif, H., Ghosh, H., Jethva, C., and Vaishnav, R.: Analysis of the middle atmospheric ozone using SABER observations: a study over mid-latitudes northern and southern hemispheres, Clim. Dynam., 54, 2481–2492, https://doi.org/10.1007/s00382-020-05124-6, 2020.
Kirchhoff, V. W. J. H., Barnes, R. A., and Torres, A. L.: Ozone climatology at Natal, Brazil, from in situ ozonesonde data, J. Geophys. Res.-Atmos., 96, 10899–10909, https://doi.org/10.1029/91JD01212 1991.
Kirchhoff, V. W. J. H., Schuch, N. J., Pinheiro, D. K., and Harris, J. M.: Evidence for an ozone hole perturbation at 30° south, Atmos. Environ., 33, 1481–1488, https://doi.org/10.1016/1352-2310(95)00362-2, 1996.
London, J.: Observed distribution of atmospheric ozone and its variations, in: Ozone in the free atmosphere, New York, 11–80, https://ui.adsabs.harvard.edu/abs/1985ofa..book...11L (last access: 15 November 2018), 1985.
Loua, R. T., Bencherif, H., Mbatha, N., Bègue, N., Hauchecorne, A., Bamba, Z., and Sivakumar, V.: Study on Temporal Variations of Surface Temperature and Rainfall at Conakry Airport, Guinea: 1960–2016, Climate, 7, 93, https://doi.org/10.3390/cli7070093, 2019.
Mlynczak, M. G., Solomon, S., and Zaras, D. S.: An updated model for O2 (a1Δg) concentrations in the mesosphere and lower thermosphere and implications for remote sensing of ozone at 1.27 µm, J. Geophys. Res., 98, 18639–18648, https://doi.org/10.1029/93JD01478, 1993.
Mlynczak, M. G., Marshall, B. T., Martin-Torres, F. J., Russell, J. M., Thompson, R. E., Remsberg, E. E., and Gordley, L. L.: Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2 1.27 lm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates, J. Geophys. Res, 112, D15306, https://doi.org/10.1029/2006JD008355, 2007.
Naoe, H., Deushi, M., Yoshida, K., and Shibata, K.: Future changes in the ozone quasi-biennial oscillation with increasing GHGs and ozone recovery in CCMI simulations, J. Climate, 30, 6977–6997, https://doi.org/10.1175/JCLI-D-16-0464.1, 2017.
Nath, O. and Sridharan, S.: Long-term variabilities and tendencies in zonal mean TIMED–SABER ozone and temperature in the middle atmosphere at 10–15° N, J. Atmos. Sol.-Terr. Phy., 120, 1–8, https://doi.org/10.1016/j.jastp.2014.08.010, 2014.
Neu, J. L., Flury, T., Manney, G. L., Santee, M. L., Livesey, N. J., and Worden, J.: Tropospheric ozone variations governed by changes in stratospheric circulation, Nat. Geosci., 7, 340–344, https://doi.org/10.1038/ngeo2138, 2014.
Newman, P. A., Coy, L., Pawson, S., and Lait, L. R.: The anomalous change in the QBO in 2015–2016, Geophys. Res. Lett., 43, 8791–8797, https://doi.org/10.1002/2016gl070373, 2016.
Reboita, M., Gan, M. A., Rosmeri, R., and Ambrizzi, T.: Precipitation regimes in South America: a bibliography review, Revista Brasileira de Meteorologia, 25, 185–204, https://doi.org/10.1590/S0102-77862010000200004, 2010.
Remsberg, E., Lingenfelser, G., Harvey, V. L., Grose, W., Russell III, J., Mlynczak, M., Gordley, L., and Marshall, B. T.: On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses, J. Geophys. Res., 108, 4628, https://doi.org/10.1029/2003JD003720, 2003.
Rigozo, N. R., Rosa, M. B. D., Rampelotto, P. H., Echer, M. P. D. S., Echer, E., Nordemann, D. J. R., Pinheiro, D. K., and Schuch, N. J.: Reconstruction and searching ozone data periodicities in southern Brazil (29° S, 53° W). Revista Brasileira de Meteorologia, 27, 243–252, https://doi.org/10.1590/S0102-77862012000200010, 2012.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr., J. J., and Esplin, R. W.: An overview of the SABER experiment and preliminary calibration results, Proc SPIE, 3756, 277–288, https://doi.org/10.1117/12.366382, 1999 (data available at: https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/).
Salby, M. L. and Callaghan, P. F.: Interannual changes of the stratospheric circulation: Relationship to ozone and tropospheric structure, J. Climate, 15, 3673–3685, https://doi.org/10.1175/1520-0442(2003)015<3673:ICOTSC>2.0.CO;2, 2002.
Santos, L. O.: Troca estratosfera-troposfera e sua influência no conteúdo de ozônio sobre a região central do Rio Grande do Sul, Masters dissertation, Universidade Federal de Santa Maria, http://repositorio.ufsm.br/handle/1/10289 (last access: 16 June 2021), 2016.
Seinfeld, J. H. and Pandis, S. N. Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, ISBN 978-1-118-94740-1, 2016.
Shapiro, M. A. and Keyser, D.: Fronts, Jet Streams and the Tropopause, in: Extratropical Cyclones, edited by: Newton, C. W. and Holopainen, E. O., American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-944970-33-8, 2015.
Sivakumar, V., Portafaix, T., Bencherif, H., Godin-Beekmann, S., and Baldy, S.: Stratospheric ozone climatology and variability over a southern subtropical site: Reunion Island (21° S; 55° E), Ann. Geophys., 25, 2321–2334, https://doi.org/10.5194/angeo-25-2321-2007, 2007.
Sivakumar, V., Bencherif, H., Bègue, N., and Thompson, A. M.: Tropopause characteristics and variability from 11 years of SHADOZ observations in the Southern Tropics and Subtropics, J. Appl. Meteorol. Clim., 50, 1403–1416, https://doi.org/10.1175/2011JAMC2453.1, 2011.
Sivakumar, V., Jimmy, R., Bencherif, H., Bègue, N., and Portafaix, T.: Use of the TREND RUN model to deduce trends in South African Weather Service (SAWS) atmospheric data: Case study over Addo (33.568° S, 25.692° E) Eastern Cape, South Africa, J. N. Atm., 1, 51–58, https://hal.univ-reunion.fr/hal-02098051 (last access: 4 July 2022), 2017.
Sousa, C. T., Leme, N. M. P., Martins, M. P. P., Silva, F. R., Penha, T. L. B., Rodrigues, N. L., Silva, E. L., and Hoelzemann, J. J.: Ozone trends on equatorial and tropical regions of South America using Dobson spectrophotometer, TOMS and OMI satellites instruments, J. Atmos. Sol.-Terr. Phy., 203, 105272, https://doi.org/10.1016/j.jastp.2020.105272, 2020 (data available at: https://woudc.org/data/explore.php?dataset=ozonesonde).
Thompson, A. M., Witte, J. C., Mcpeters, R. D., Oltmans, S. J., Schmidlin, F. J., Logan, J. A., Fujiwara, M., Kirchoff, V. W. J. H., Posny, F., Coetzee, G. J. R., Hoegger, B., Kawakami, S., Ogawa, T., Johnson, B. J., Voemel, H. and Labow, G.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements, J. Geophys. Res.-Atmos., 108, 8238, https://doi.org/10.1029/2001JD000967, 2003a.
Thompson, A. M., Witte, J. C., Oltmans, S. J., Schmidlin, F. J., Logan, J. A., Fujiwara, M., Kirchoff, V. W. J. H., Posny, F., Coetzee, G. J. R., Hoegger, B., Kawakami, S., Ogawa, T., Fortuin, J. P. F., and Kelder, H. M.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 2. Tropospheric variability and the zonal wave-one, J. Geophys. Res.-Atmos., 108, 8241, https://doi.org/10.1029/2002JD002241, 2003b.
Thompson, A. M., Witte, J. C., Sterling, C., Jordan, A., Johnson, B. J., Oltmans, S. J., and Thiongo, K.: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998–2016): 2. Comparisons with satellites and ground-based instruments, J. Geophys. Res.-Atmos., 122, 13000–13025, https://doi.org/10.1002/2017JD027406, 2017 (data available at: https://tropo.gsfc.nasa.gov/shadoz/Natal.html).
Thompson, A. M., Stauffer, R. M., Wargan, K., Witte, J. C., Kollonige, D. E., and Ziemke, J. R.: Regional and seasonal trends in tropical ozone from SHADOZ profiles: Reference for models and satellite products, J. Geophys. Res.-Atmos., 126, e2021JD034691, https://doi.org/10.1029/2021JD034691, 2021.
Toihir, A. M., Bencherif, H., Sivakumar, V., El Amraoui, L., Portafaix, T., and Mbatha, N.: Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics, Ann. Geophys., 33, 1135–1146, https://doi.org/10.5194/angeo-33-1135-2015, 2015.
Toihir, A. M., Portafaix, T., Sivakumar, V., Bencherif, H., Pazmiño, A., and Bègue, N.: Variability and trend in ozone over the southern tropics and subtropics, Ann. Geophys., 36, 381–404, https://doi.org/10.5194/angeo-36-381-2018, 2018.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2, 1998.
Vaz Peres, L., Bencherif, H., Mbatha, N., Passaglia Schuch, A., Toihir, A. M., Bègue, N., Portafaix, T., Anabor, V., Kirsch Pinheiro, D., Paes Leme, N. M., Bageston, J. V., and Schuch, N. J.: Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil, Ann. Geophys., 35, 25–37, https://doi.org/10.5194/angeo-35-25-2017, 2017 (data available at: https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMTO3/).
Weber, M., Dikty, S., Burrows, J. P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., and Langematz, U.: The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales, Atmos. Chem. Phys., 11, 11221–11235, https://doi.org/10.5194/acp-11-11221-2011, 2011.
Wing, R., Steinbrecht, W., Godin-Beekmann, S., McGee, T. J., Sullivan, J. T., Sumnicht, G., Ancellet, G., Hauchecorne, A., Khaykin, S., and Keckhut, P.: Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE), Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, 2020.
Witte, J. C., Thompson, A. M., Smit, H. G. J., Fujiwara, M., Posny, F., Coetzee, G. J. R., and Da Silva, F. R.: First reprocessing of Southern Hemisphere ADditional Ozonesondes (SHADOZ) profile records (1998–2015): 1. Methodology and evaluation, J. Geophys. Res.-Atmos., 122, 6611–6636, https://doi.org/10.1002/2016JD026403, 2017.
WMO: World Meteorological Organization (WMO), WMO Global Ozone Research and Monitoring Project – Report No. 44 – Scientific Assessment of Ozone Depletion 1998, https://csl.noaa.gov/assessments/ozone/1998 (last access: 3 June 2016), 1998.
WMO: World Meteorological Organization (WMO), WMO Global Ozone Research and Monitoring Project – Report No. 50 – Scientific Assessment of Ozone Depletion 2006, https://csl.noaa.gov/assessments/ozone/2006 (last access: 5 January 2021), 2006.
WMO: World Meteorological Organization (WMO), WMO Global Ozone Research and Monitoring Project – Report No. 58 – Scientific Assessment of Ozone Depletion: 2018, https://csl.noaa.gov/assessments/ozone/2018 (last access: 28 April 2021), 2018.
WMO: World Meteorological Organization (WMO), WMO Global Ozone Research and Monitoring – GAW Report No. 278 – Scientific Assessment of Ozone Depletion: 2022, https://csl.noaa.gov/assessments/ozone/2022 (last access: 25 May 2023), 2022.
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
The study examines the behavior of ozone at equatorial and subtropical latitudes in South...