Articles | Volume 17, issue 24
https://doi.org/10.5194/amt-17-7129-2024
https://doi.org/10.5194/amt-17-7129-2024
Research article
 | 
20 Dec 2024
Research article |  | 20 Dec 2024

Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation

He Huang, Quan Wang, Chao Liu, and Chen Zhou

Model code and software

Code-for-Huang H. Huang https://doi.org/10.5281/zenodo.14448415

Download
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.