Articles | Volume 17, issue 24
https://doi.org/10.5194/amt-17-7129-2024
https://doi.org/10.5194/amt-17-7129-2024
Research article
 | 
20 Dec 2024
Research article |  | 20 Dec 2024

Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation

He Huang, Quan Wang, Chao Liu, and Chen Zhou

Related authors

Precursor dynamical factors in the local lower atmosphere of Warm-Sector Heavy Rainfall over South China: Evidences from Wind Profiler Observations
Wanju Li, Lifang Sheng, Xueyan Bi, Zehao Huang, Yali Luo, Shiqi Xiao, Chao Liu, Yang Yang, Jiandong Wang, Yuanjian Yang, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2955,https://doi.org/10.5194/egusphere-2025-2955, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Assimilating Geostationary Satellite Visible Reflectance Data: developing and testing the GSI-EnKF-CRTM-Vis technique
Chong Luo, Yongbo Zhou, Yubao Liu, Wei Han, Bin Yao, and Chao Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4553,https://doi.org/10.5194/egusphere-2025-4553, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A global classification dataset of daytime and nighttime marine low-cloud mesoscale morphology based on deep-learning methods
Yuanyuan Wu, Jihu Liu, Yannian Zhu, Yu Zhang, Yang Cao, Kang-En Huang, Boyang Zheng, Yichuan Wang, Yanyun Li, Quan Wang, Chen Zhou, Yuan Liang, Jianning Sun, Minghuai Wang, and Daniel Rosenfeld
Earth Syst. Sci. Data, 17, 3243–3258, https://doi.org/10.5194/essd-17-3243-2025,https://doi.org/10.5194/essd-17-3243-2025, 2025
Short summary
Responses of polar energy budget to regional sea surface temperature changes in extra-polar regions
Qingmin Wang, Yincheng Liu, Lujun Zhang, and Chen Zhou
Atmos. Chem. Phys., 25, 6741–6755, https://doi.org/10.5194/acp-25-6741-2025,https://doi.org/10.5194/acp-25-6741-2025, 2025
Short summary
Inversion algorithm of black carbon mixing state based on machine learning
Zeyuan Tian, Jiandong Wang, Jiaping Wang, Chao Liu, Jia Xing, Jinbo Wang, Zhouyang Zhang, Yuzhi Jin, Sunan Shen, Bin Wang, Wei Nie, Xin Huang, and Aijun Ding
Atmos. Meas. Tech., 18, 1149–1162, https://doi.org/10.5194/amt-18-1149-2025,https://doi.org/10.5194/amt-18-1149-2025, 2025
Short summary

Cited articles

Arking, A. and Childs, J. D.: Retrieval of Cloud Cover Parameters from Multispectral Satellite Images, J. Appl. Meteor. Climatol., 24, 322–334, https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2, 1985. 
Bai, H., Zheng, Z., Zhang, Y., Huang, H., and Wang, L.: Comparison of Satellite-based PM2.5 Estimation from Aerosol Optical Depth and Top-of-atmosphere Reflectance, Aerosol Air Qual. Res., 21, 1–17, https://doi.org/10.4209/aaqr.2020.05.0257, 2021. 
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res.-Atmos., 115, D4, https://doi.org/10.1029/2009JD012346, 2010. 
Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 923–1054 pp., https://doi.org/10.1017/9781009157896.009, 2021. 
Garrett, K. J., Yang, P., Nasiri, S. L., Yost, C. R., and Baum, B. A.: Influence of cloud-top height and geometric thickness on a MODIS infrared-based ice cloud retrieval, J. Appl. Meteorol. Climatol., 48, 818–832, https://doi.org/10.1175/2008JAMC1915.1, 2009. 
Download
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.
Share