Articles | Volume 18, issue 6
https://doi.org/10.5194/amt-18-1389-2025
https://doi.org/10.5194/amt-18-1389-2025
Research article
 | 
24 Mar 2025
Research article |  | 24 Mar 2025

Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic

Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson

Related authors

A Machine-learning Based Marine Planetary Boundary Layer (MPBL) Moisture Profile Retrieval Product from GNSS-RO Deep Refraction Signals
Jie Gong, Dong Liang Wu, Michelle Badalov, Manisha Ganeshan, and Minghua Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-973,https://doi.org/10.5194/egusphere-2024-973, 2024
Short summary

Cited articles

Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles, J. Geophys. Res., 117, D16117, https://doi.org/10.1029/2012JD017598, 2012. 
Basha, G. and Ratnam, M.V.: Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements, J. Geophys. Res., 114, D16101, https://doi.org/10.1029/2008jd011692, 2009.​​​​​​​ 
Bowler, N. E.: An assessment of GNSS radio occultation data produced by Spire, Q. J. Roy. Meteor. Soc., 146, 3772–3788, 2020. 
Chang, H., Lee, J., Yoon, H., Morton, Y. J., and Saltman, A.: Performance assessment of radio occultation data from GeoOptics by comparing with COSMIC data, Earth Planets Space, 74, 108, https://doi.org/10.1186/s40623-022-01667-6, 2022.​​​​​​​ 
CSDA: CSDA SmallSat Data Explorer, Commercial Satellite Data Acquisition (CSDA), https://csdap.earthdata.nasa.gov/, last access: 27 January 2025. 
Download
Short summary
This study explores the potential of two newly launched commercial Global Navigation Satellite System (GNSS) radio occultation (RO) satellite missions for advancing Arctic lower-atmospheric studies. The products have a good sampling of the lower Arctic atmosphere and are useful to derive the planetary boundary layer (PBL) height during winter months. This research is a step towards closing the observation gap in polar regions due to the decomissioning of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) GNSS RO mission and the lack of high-latitude coverage by its successor (COSMIC-2).
Share