Articles | Volume 18, issue 6
https://doi.org/10.5194/amt-18-1485-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1485-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A novel assessment of the vertical velocity correction for non-orthogonal sonic anemometers
Kyaw Tha Paw U
CORRESPONDING AUTHOR
Atmospheric Science, University of California, Davis, CA 95616, USA
Mary Rose Mangan
Atmospheric Science, University of California, Davis, CA 95616, USA
Meteorology and Air Quality Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
Jilmarie Stephens
Atmospheric Science, University of California, Davis, CA 95616, USA
now at: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
Kosana Suvočarev
Atmospheric Science, University of California, Davis, CA 95616, USA
Jenae' Clay
Atmospheric Science, University of California, Davis, CA 95616, USA
Olmo Guerrero Medina
Atmospheric Science, University of California, Davis, CA 95616, USA
Emma Ware
Atmospheric Science, University of California, Davis, CA 95616, USA
Amanda Kerr-Munslow
Field Site Cardington Airfield, Met Office, Bedford, MK42 0SY, UK
James McGregor
Field Site Cardington Airfield, Met Office, Bedford, MK42 0SY, UK
John Kochendorfer
Atmospheric Science, University of California, Davis, CA 95616, USA
now at: Atmospheric Turbulence and Diffusion Division, NOAA Air Resources Laboratory, Oak Ridge, TN 37830, USA
Megan McAuliffe
Atmospheric Science, University of California, Davis, CA 95616, USA
now at: Triangulum Insights, Inc., Willmar, MN 56201, USA
Megan Metz
Atmospheric Science, University of California, Davis, CA 95616, USA
now at: Cropping Systems and Water Quality Research, USDA Agricultural Research Service, Columbia, MO 65211, USA
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Mary Rose Mangan, Jordi Vilà-Guerau de Arellano, Bart J. H. van Stratum, Marie Lothon, Guylaine Canut-Rocafort, and Oscar K. Hartogensis
Atmos. Chem. Phys., 25, 8959–8981, https://doi.org/10.5194/acp-25-8959-2025, https://doi.org/10.5194/acp-25-8959-2025, 2025
Short summary
Short summary
Using observations and high-resolution turbulence modeling, we examine the influence of irrigation-driven surface heterogeneity on the atmospheric boundary layer (ABL). We use a multi-scale approach for characterizing surface heterogeneity to explore how its influence on the ABL within a grid cell would change with higher-resolution models. We find that the height of the ABL is variable across short distances and that the surface heterogeneity is felt least strongly in the middle of the ABL.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Short summary
A new wind shield has been designed to reduce the effects of precipitation gauge undercatch. Tested at three separate sites, it compared well to a well-established refence-quality precipitation wind shield. The new wind shield is smaller and more durable than other reference-quality shields, and it was designed for use in operational weather and climate networks.
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97, https://doi.org/10.5194/soil-8-85-2022, https://doi.org/10.5194/soil-8-85-2022, 2022
Short summary
Short summary
Do-it-yourself hardware is a new approach for improving measurement resolution in research. Here we present a new low-cost, wireless underground sensor network for soil monitoring. All data logging, power, and communication component cost is USD 150, much cheaper than other available commercial solutions. We provide the complete building guide to reduce any technical barriers, which we hope will allow easier reproducibility and open new environmental monitoring applications.
Cited articles
Beyrich, F., Richter, S. H., Weisensee, U., Kohsiek, W., Lohse, H., de Bruin, H. A. R., Foken, T., Goeckede, M., Berger, F., Vogt, R., and Batchvarova, E.: Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: selected results from the LITFASS-98 experiment, Theor. Appl. Climatol., 73, 19–34, https://doi.org/10.1007/s00704-002-0691-7, 2002.
Boone, A., Bellvert, J., Best, M., Brooke, J., Canut-Rocafort, G., Cuxart, J., Hartogensis, O., Le Moigne, P., Miró, J. R., Polcher, J., Price, J., Quintana Seguí, P., and Wooster, M.: Updates on the International Land Surface Interactions with the Atmophere over the Iberian Semi-Arid Environment (LIAISE) Field Campaign, GEWEX News, 31, 17–21, 2021.
Bosveld, F. C. and Beljaars, A. C. M.: The impact of sampling rate on eddy-covariance flux estimates, Agr. Forest Meteorol., 109, 39–45, https://doi.org/10.1016/s0168-1923(01)00257-x, 2001.
Brooke, J. K., Best, M. J., Lock, A. P., Osborne, S. R., Price, J., Cuxart, J., Boone, A., Canut-Rocafort, G., Hartogensis, O. K., and Roy, A.: Irrigation contrasts through the morning transition, Q. J. Roy. Meteor. Soc., 150, 170–194, https://doi.org/10.1002/qj.4590, 2024.
Foken, T.: Comparison of the sonic anemometer Young Model 81000 during VOITEX-99, Arbeitsergebnisse No. 8, Bayreuth, October 1999, ISSN 1614-8916, 1999.
Foken, T., Weisensee, U., Kirzel, H.-J., and Thiermann, V.: Comparison of new-type sonic anemometers, Preprint volume of the 12th Symposium on Boundary Layers and turbulence, 28 July–1 August 1997, Vancouver Canada, Am. Meteorol. Soc., Boston, 356–357, 1997.
Frank, J. M., Massman, W. J., and Ewers, B. E.: Underestimates of sensible heat flux due to vertical velocity measurement errors in nonorthogonal sonic anemometers, Agr. Forest Meteorol., 171–172, 72–81, https://doi.org/10.1016/j.agrformet.2012.11.005, 2013.
Frank, J. M., Massman, W. J., Swiatek, E., Zimmerman, H. A., and Ewers, B. E.: All sonic anemometers need to correct for transducer and structural shadowing in their velocity measurements, J. Atmos. Ocean Tech., 33, 149–167, https://doi.org/10.1175/JTECH-D-15-0171.1, 2016.
Frank, J. M., Massman, W. J., Chan, W. S., Nowicki, K., and Rafkin, S. C. R.: Coordinate Rotation–Amplification in the Uncertainty and Bias in Non-orthogonal Sonic Anemometer Vertical Wind Speeds, Bound.-Lay. Meteorol., 175, 203–235, https://doi.org/10.1007/s10546-020-00502-3, 2020.
Glabeke, G., Gigon, A., De Mulder, T., and van Beeck, J.: How accurate are ultrasonic anemometers, calibrated in a laminar wind tunnel, under turbulent conditions, J. Phys. Conf. Ser., 2767, 042023, https://doi.org/10.1088/1742-6596/2767/4/042023, 2024.
Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: An experimental study of Reynolds stress and heat flux in the atmospheric surface layer, Q. J. Roy. Meteor. Soc., 97, 168–180, 1971.
Horst, T. W., Semmer, S. R., and Maclean, G.: Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing, Bound.-Lay. Meteorol., 155, 371–395, https://doi.org/10.1007/s10546-015-0010-3, 2015.
Horst, T. W., Vogt, R., and Oncley, S. P.: Measurements of flow distortion within the IRGASON integrated sonic anemometer and CO2/H2O gas analyzer, Bound.-Lay. Meteorol., 160, 1–15, https://doi.org/10.1007/s10546-015-0123-8, 2016.
Huq, S., De Roo, F., Foken, T., and Mauder, M.: Evaluation of probe-induced flow distortion of Campbell CSAT3 sonic anemometers by numerical simulation, Bound.-Lay. Meteorol., 165, 9–28, https://doi.org/10.1007/s10546-017-0264-z, 2017.
Kleissl, J., Meneveau, C., and Parlange, M.B .: On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer, J Atmos. Sci. 60, 2372–2388, https://doi.org/10.1175/1520-0469(2003)060<2372:otmavo>2.0.co;2, 2003.
Kochendorfer, J. and Paw U, K. T.: Field estimates of scalar advection across a canopy edge, Agr. Forest Meteorol., 151, 585–594, https://doi.org/10.1016/j.agrformet.2011.01.003, 2011.
Kochendorfer, J., Meyers, T. P., Frank, J. M., Massman, W. J., and Heuer, M. W.: How well can e measure the vertical wind speed? Implication for fluxes of energy and mass, Bound.-Lay. Meteorol., 145, 383–398, https://doi.org/10.1007/s10546-012-9738-1, 2012.
Lloyd, C.: A path to successful eddy covariance measurements, https://uk-scape.ceh.ac.uk/sites/default/files/2023-09/Eddy Covariance Handbook-V21.pdf (last access: 4 August 2024), 2023.
Loescher, H. W., Ocheltree, T., Tanner, B., Swiatek, E., Dano, B., Wong, J., Zimmerman, G., Campbell, J., Stock, C., Jacobsen, L., Shiga, Y., Kollas, J., Liburdy, J., and Law, B. E.: Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer-thermometers, Agr. Forest Meteorol., 133, 119–138, https://doi.org/10.1016/j.agrformet.2005.08.009, 2005
Mangan, M. R., Hartogensis, O., Boone, A., Branch, O., Canut, G., Cuxart, J., de Boer, H. J., Le Page, M., Martínez-Villagrasa, D., Miró, J. R., Price, J., and Vilà-Guerau de Arellano, J.: The surface-boundary layer connection across spatial scales of irrigation-driven thermal heterogeneity: An integrated data and modeling study of the LIAISE field campaign, Agr. Forest Meterol., 335, 109452, https://doi.org/10.1016/j.agrformet.2023.109452, 2023.
Mauder, M.: A comment on “how well can we measure the vertical wind speed? Implications for fluxes or energy and mass” by Kochendorfer et al., Bound.-Lay. Meteorol. 147, 329–335, https://doi.org/10.1007/s10546-012-9794-6, 2013.
Mauder, M. and Zeeman, M. J.: Field intercomparison of prevailing sonic anemometers, Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, 2018.
Mauder, M., Oncley, S. P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer, C., Foken, T., Kohsiek, W., Bruin, H. A. R., and Liu, H.: The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods, Bound. -Lay. Meteorol., 123, 29–54, https://doi.org/10.1007/s10546-006-9139-4, 2007.
Merry, M. and Panofsky, H. A.: Statistics of vertical motion over land and water, Q. J. Roy. Meteor. Soc., 102, 255–260, https://doi.org/10.1002/qj.49710243120, 1976.
Mortensen, N. G. and Højstrup, J.: The Solent sonic-response and associated errors, Preprint volume of the Ninth Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Boston, MA, 27–31 March 1995, 501–506, 1995.
Nakai, T., van der Molen, M. K., Gash, J. H. C., and Kodama, Y.: Correction of sonic anemometer angle of attack errors, Agr. Forest Meteorol., 136, 19–30, https://doi.org/10.1016/j.agrformet.2006.01.006, 2006.
Panofsky, H. A. and Dutton, J. A.: Atmospheric Turbulence, John Wiley & Sons, 397 pp., 1984.
Panofsky, H. A., Tennekes, H., Lenschow, D.., and Wyngaard, J. C.: The characteristics of turbulent velocity components in the surface layer under convective conditions, Bound.-Lay. Meteorol. 11, 355–361, https://doi.org/10.1007/bf02186086, 1977.
Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K.: Correction of eddy-covariance measurements incorporating both advective effects and density fluxes, Bound.-Lay. Meteorol., 97, 487–451, https://doi.org/10.1023/a:1002786702909, 2000.
Paw U, K. T., Kent, E., Clay, J. M., Leinfelder-Miles, M., Lambert, J.-J., McAuliffe, M., Edgar, D., Freiberg, S., Gong, R., Metz, M., Little, C., and Temegsen, B.: Appendix B. Field campaign report for water years 2015–2016 and 2016–2017, in: A comparative study for estimating crop evapotranspiration in the Sacramento-San Joaquin Delta, report for the Office of the Delta Watermaster, University of California, Davis, 2018.
Paw U, K. T., Clay, J. M., McAuliffe, M., Schmiedeler, M., and Mangan, M. R.: Appendix B. Measuring evapotranspiration in fallow and cropped field sin the California Delta 2018, in: Evapotranspiration of fallow field sin the California Delta, report for the Office of the Delta Watermaster, University of California, Davis, 2019.
Peña, A., Dellwik, E., and Mann, J.: A method to assess the accuracy of sonic anemometer measurements, Atmos. Meas. Tech., 12, 237–252, https://doi.org/10.5194/amt-12-237-2019, 2019.
Polonik, P., Chan, W. S., Billesbach, D. P., Burba, G., Li, J., Nottrott, A., Bogoev, I., Conrad, B., and Biraud, S. C.: Comparison of gas analyzers for eddy covariance: effects of analyzer type and spectra correctdions on fluxes, Agr. Forest Meteorol., 272–273, 128–142, https://doi.org/10.1016/j.agrformet.2019.02.010, 2019.
Sharan, M., Gopalakrishnan, S. G., and McNider, R. T.: A local parameterization scheme for σw under stable conditions, J. Appl. Meteorol. 38, 617–622, https://doi.org/10.1175/1520-0450(1999)038<0617:alpsfw>2.0.co;2, 1999.
Thurtell, G. W., Tanner, C. B., and Wesely, M. L.: Three-dimensional pressure-sphere anemometer system, J. Appl. Meteorol., 9, 379–385, https://doi.org/10.1175/1520-0450(1970)009<0379:tdpsas>2.0.co;2, 1970.
Wang, L., Lee, X., Wang, W., Wang, X., Wei, Z., Fu, C., Gao, Y., Lu, L., Song, W., Su, P., and Lin, G.: A meta-analysis of open-path eddy covariance observations of apparent CO2 flux in cold conditions in FLUXNET, J. Atmos. Ocean. Tech., 34, 2475–2487, https://doi.org/10.1175/JTECH-D-17-0085.1, 2017.
Wyngaard, J. C.: The effects of probe-induced flow distortion on atmospheric turbulence measurements, J. Appl. Meteorol., 20, 784–794, https://doi.org/10.1175/1520-0450(1981)020<0784:TEOPIF>2.0.CO;2, 1981.
Wyngaard, J. C., Cote, O. R., and Izumi, Y.: Local free convection, similarity, and the budgets of shear stess and heat flux, J. Atmos. Sci. 28, 1171–1182, https://doi.org/10.1175/1520-0469(1971)028<1171:lfcsat>2.0.co;2, 1971.
Short summary
Sonic anemometers measure wind velocity in three dimensions. They are used worldwide to help assess the trace gas exchange, critical to understanding climate change. However, their physical framework interferes with the flow they measure. We present a new way of correcting measurements from sonic anemometers of several types. The method uses measurements of vertical wind velocity and other turbulent velocities, compares their ratios, and from this yields correction factors for sonic anemometers.
Sonic anemometers measure wind velocity in three dimensions. They are used worldwide to help...