Articles | Volume 18, issue 9
https://doi.org/10.5194/amt-18-2201-2025
https://doi.org/10.5194/amt-18-2201-2025
Research article
 | 
16 May 2025
Research article |  | 16 May 2025

Comparison of methods for resolving the contributions of local emissions to measured concentrations

Taylor D. Edwards, Yee Ka Wong, Cheol-Heon Jeong, Jonathan M. Wang, Yushan Su, and Greg J. Evans

Related authors

Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
An interlaboratory comparison to quantify oxidative potential measurement in aerosol particles: challenges and recommendations for harmonisation
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025,https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Chemical transformation of α-pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022,https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Measurement report: Characterization and source apportionment of coarse particulate matter in Hong Kong: insights into the constituents of unidentified mass and source origins in a coastal city in southern China
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022,https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
APPLICATION OF DISTRIBUTED URBAN SENSOR NETWORKS FOR ACTIONABLE AIR QUALITY DATA
E. Morris, X. Liu, A. Manwar, D. Y. Zang, G. Evans, J. Brook, B. Rousseau, C. Clark, and J. MacIsaac
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-4-W2-2020, 119–126, https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-119-2020,https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-119-2020, 2020

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network
Calum P. Wilson and Michael J. Prather
Atmos. Meas. Tech., 18, 1757–1769, https://doi.org/10.5194/amt-18-1757-2025,https://doi.org/10.5194/amt-18-1757-2025, 2025
Short summary
Revised methodology for CO2 and CH4 measurements at remote sites using a working standard-gas-saving system
Motoki Sasakawa, Noritsugu Tsuda, Toshinobu Machida, Mikhail Arshinov, Denis Davydov, Aleksandr Fofonov, and Boris Belan
Atmos. Meas. Tech., 18, 1717–1730, https://doi.org/10.5194/amt-18-1717-2025,https://doi.org/10.5194/amt-18-1717-2025, 2025
Short summary
Digitization and calibration of historical solar absorption infrared spectra from the Jungfraujoch site
Jamal Makkor, Mathias Palm, Matthias Buschmann, Emmanuel Mahieu, Martyn P. Chipperfield, and Justus Notholt
Atmos. Meas. Tech., 18, 1105–1114, https://doi.org/10.5194/amt-18-1105-2025,https://doi.org/10.5194/amt-18-1105-2025, 2025
Short summary
Advancing N2O flux chamber measurement techniques in nutrient-poor ecosystems
Nathalie Ylenia Triches, Jan Engel, Abdullah Bolek, Timo Vesala, Maija E. Marushchak, Anna-Maria Virkkala, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-203,https://doi.org/10.5194/amt-2024-203, 2025
Revised manuscript accepted for AMT
Short summary
Direct high-precision radon quantification for interpreting high-frequency greenhouse gas measurements
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025,https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 25 July 2019, Anchorage, Alaska, USA, https://doi.org/10.1145/3292500.3330701, 2019.​​​​​​​ 
Arunachalam, S., Valencia, A., Akita, Y., Serre, M., Omary, M., Garcia, V., and Isakov, V.: A Method for Estimating Urban Background Concentrations in Support of Hybrid Air Pollution Modeling for Environmental Health Studies, Int. J. Environ. Res. Public. Health, 11, 10518–10536, https://doi.org/10.3390/ijerph111010518, 2014. 
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD'16, ACM, 13–17 August​​​​​​​ 2016, San Francisco, California, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Crameri, F.: Scientific colour maps (8.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.8409685, 2023. 
Download
Short summary
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of air pollution that were emitted by a nearby polluter from background pollution that was already in the air. The results show that machine learning and other statistical algorithms produced accurate estimates of this background pollution. These findings help scientists and regulators to understand where pollution comes from and to improve measurements of pollution from sources like traffic.
Share