Articles | Volume 18, issue 9
https://doi.org/10.5194/amt-18-2201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of methods for resolving the contributions of local emissions to measured concentrations
Taylor D. Edwards
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Yee Ka Wong
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Cheol-Heon Jeong
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Jonathan M. Wang
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Yushan Su
Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, Ontario, Canada
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Related authors
No articles found.
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025, https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
Short summary
Nitrogen dioxide (NO2) is a pollutant with a short lifetime and large variability, but there are limited measurements of its distribution in the lower atmosphere. We present a new 3-year dataset of NO2 vertical profiles in Toronto, Canada, and evaluate it using NO2 from satellite and surface monitoring networks and simulations by an air quality forecast model. We quantify and explain the differences among the datasets to provide information that can be used to understand NO2 variability.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022, https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022, https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
Short summary
Coarse particulate matter (PM) has been shown to cause adverse health impacts, but compared to PM2.5, the source of coarse PM is less studied through field measurements. We collected chemical composition data for coarse PM in Hong Kong for a 1-year period. Using statistical models, we found that regional transport of fugitive dust is responsible for the elevated coarse PM. This work sets an example of how field measurements can be effectively utilized for evidence-based policymaking.
Cited articles
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 25 July 2019, Anchorage, Alaska, USA, https://doi.org/10.1145/3292500.3330701, 2019.
Arunachalam, S., Valencia, A., Akita, Y., Serre, M., Omary, M., Garcia, V., and Isakov, V.: A Method for Estimating Urban Background Concentrations in Support of Hybrid Air Pollution Modeling for Environmental Health Studies, Int. J. Environ. Res. Public. Health, 11, 10518–10536, https://doi.org/10.3390/ijerph111010518, 2014.
Celles, S., Filipe, Kittner, J., Quick, J., Weber, S., lubyant, strawberry beach sandals, Ogasawara, I., Bachant, P., Partanen, J., Kassem, H., Maussion, F., Schmidt, J., Kvalsvik, J., Uieda, L., Miguel R, Raj, S. P., Stas, McCann, J., and sspagnol: python-windrose/windrose: v1.9.2 (v1.9.2), Zenodo [code], https://doi.org/10.5281/zenodo.13133010, 2024.
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD'16, ACM, 13–17 August 2016, San Francisco, California, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Crameri, F.: Scientific colour maps (8.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.8409685, 2023.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
da Costa-Luis, C., Larroque, S. K., Altendorf, K., Mary, H., richardsheridan, Korobov, M., Yorav-Raphael, N., Ivanov, I., Bargull, M., Rodrigues, N., Shawn, Dektyarev, M., Górny, M., mjstevens777, Pagel, M. D., Zugnoni, M., JC, CrazyPython, Newey, C., Lee, A., pgajdos, Todd, Malmgren, S., redbug312, Desh, O., Nechaev, N., Boyle, M., Nordlund, M., MapleCCC, and McCracken, J.: tqdm: A fast, Extensible Progress Bar for Python and CLI (v4.67.1), Zenodo [code], https://doi.org/10.5281/zenodo.14231923, 2024.
Environmental Protection Agency: Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM10 Nonattainment and Maintenance Areas – Appendices, Environmental Protection Agency, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/20101201_otaq_epa-420_b-10-040_transport_conform_hot-spot_analysis_appx.pdf (last access: 24 April 2025), 2010.
Frey, H. C., Grieshop, A. P., Khlystov, A., Bang, J. J., Rouphail, N., Guinnessa, J., Rodriguez, D., Fuentes, M., Saha, P., Brantley, H., Snyder, M., Tanvir, S., Ko, K., Noussi, T., Delavarrafiee, M., and Singh, S.: Characterizing Determinants of Near-Road Ambient Air Quality for an Urban Intersection and a Freeway Site, Health Effects Institute, ISSN 2688-6855, 2022.
Fushimi, A., Kawashima, H., and Kajihara, H.: Source apportionment based on an atmospheric dispersion model and multiple linear regression analysis, Atmos. Environ., 39, 1323–1334, https://doi.org/10.1016/j.atmosenv.2004.11.009, 1997.
Gómez-Losada, Á., Pires, J. C. M., and Pino-Mejías, R.: Characterization of background air pollution exposure in urban environments using a metric based on Hidden Markov Models, Atmos. Environ., 127, 255–261, https://doi.org/10.1016/j.atmosenv.2015.12.046, 2016.
Gómez-Losada, Á., Pires, J. C. M., and Pino-Mejías, R.: Modelling background air pollution exposure in urban environments: Implications for epidemiological research, Environ. Model. Softw., 106, 13–21, https://doi.org/10.1016/j.envsoft.2018.02.011, 2018.
Harris, C. R., Millman, K. J., van derWalt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Hashad, K., Yang, B., Iskov, V., and Zhang, K. M.: A Computationally Efficient Approach to Resolving Vehicle-Induced Turbulence for Near-Road Air Quality, ASME J. Eng. Sustain. Build. Cities, 3, 031001, https://doi.org/10.1115/1.4055640, 2022.
Hicks, W., Beevers, S., Tremper, A. H., Stewart, G., Priestman, M., Kelly, F. J., Lanoisellé, M., Lowry, D., and Green, D. C.: Quantification of non-exhaust particulate matter traffic emissions and the impact of COVID-19 lockdown at London Marylebone road, Atmosphere, 12, 190, https://doi.org/10.3390/atmos12020190, 2021.
Hilker, N., Wang, J. M., Jeong, C.-H., Healy, R. M., Sofowote, U., Debosz, J., Su, Y., Noble, M., Munoz, A., Doerksen, G., White, L., Audette, C., Herod, D., Brook, J. R., and Evans, G. J.: Traffic-related air pollution near roadways: discerning local impacts from background, Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, 2019.
Hunter, J. D.: Matplotlib: A 2d graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Jeong, C.-H., Traub, A., Huang, A., Hilker, N., Wang, J. M., Herod, D., Dabek-Zlotorzynska, E., Celo, V., and Evans, G. J.: Long-term analysis of PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative potential, Environ. Pollut., 263, 114652, https://doi.org/10.1016/j.envpol.2020.114652, 2020.
Klems, J. P., Pennington, M. R., Zordan, C. A., and Johnston, M. V.: Ultrafine particles near a roadway intersection: Origin and apportionment of fast changes in concentration, Environ. Sci. Technol., 44, 7903–7907, https://doi.org/10.1021/es102009e, 2010.
Kohler, M., Corsmeier, U., Vogt, U., and Vogel, B.: Estimation of gaseous real-world traffic emissions downstream a motorway, Atmos. Environ., 39, 5665–5684, https://doi.org/10.1016/j.atmosenv.2004.09.088, 2005.
Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E., and Mabury, S. A.: Identification of the Major Sources Contributing to PM2.5 Observed in Toronto, Environ. Sci. Technol., 37, 4831–4840, https://doi.org/10.1021/es026473i, 2003.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, 31st Conference on Neural Information Processing Systems (NIPS 2017), 4–9 December 2017, Long Beach, CA, USA, ISBN 9781510860964, 2017.
Morris, E., Liu, X., Manwar, A., Zang, D. Y., Evans, G., Brook, J., Rousseau, B., Clark, C., and MacIsaac, J.: APPLICATION OF DISTRIBUTED URBAN SENSOR NETWORKS FOR ACTIONABLE AIR QUALITY DATA, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-4/W2-2020, 119–126, https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-119-2020, 2020.
National Centers for Environmental Information: Integrated Surface Database (ISD), National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database (last access: 24 April 2025), 2025.
National Oceanic and Atmospheric Administration: ESRL Radiosonde Database, National Oceanic and Atmospheric Administration [data set], https://web.archive.org/web/20240927233232/https://ruc.noaa.gov/raobs/ (last access: 12 April 2024), 2024.
Olaguer, E.: Twenty-First Century Tools for Environmental Protection: Real-Time Monitoring, Fine-Scale Modelling and Advanced Analytics for Air Quality Applications, in: Next Generation Ambient Air Monitoring Conference, 14 September 2022, London, Ontario, Canada, 2022.
Ontario: Ontario Regulation 167/12: Vehicle Weights And Dimensions – For Safe, Productive And Infrastructure-Friendly Vehicles, The Ontario Gazette, Provincial Government of Ontario, https://www.ontario.ca/laws/regulation/r12167 (last access: 24 April 2025), 2012.
Ontario Ministry of Transportation: Provincial Highways Traffic Volumes 1988–2019, Ontario Ministry of Transportation, https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/tvSplash.aspx (last access: 24 April 2025), 2021.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Rodríguez, J., Villalobos, A. M., Castro-Molinare, J., and Jorquera, H.: Local and NON-LOCAL source apportionment of black carbon and combustion generated PM2.5, Environ. Pollut., 346, 123568, https://doi.org/10.1016/j.envpol.2024.123568, 2024.
Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer, M. K., O'Doherty, S., Buchmann, B., and Hueglin, C.: Robust extraction of baseline signal of atmospheric trace species using local regression, Atmos. Meas. Tech., 5, 2613–2624, https://doi.org/10.5194/amt-5-2613-2012, 2012.
Sabaliauskas, K., Jeong, C.-H., Yao, X., and Evans, G. J.: The application of wavelet decomposition to quantify the local and regional sources of ultrafine particles in cities, Atmos. Environ., 95, 249–257, https://doi.org/10.1016/j.atmosenv.2014.05.035, 2014.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical modeling with python, in: 9th Python in Science Conference, 28 June 2010, Austin, Texas, USA, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Smith, N. J., Wardrop, M., Hudon, C., broessli, Quackenbush, P., Seabold, S., Portnoy, A., Beasley, B., Davidson-Pilon, C., Kibirige, H., Leinweber, K., Sheppard, K., Humber, M., Colange, M., Hudson-Doyle, M., Korenčiak, M., and Gates, T.: pydata/patsy: v0.5.6 (v0.5.6), Zenodo [code], https://doi.org/10.5281/zenodo.10459707, 2024.
Snyder, M. G. and Heist, D. K.: User's guide for R-LINE Model Version 1.2; A Research LINE source model for near-surface releases, United States EPA, 1–33, https://www.cmascenter.org/r-line/documentation/1.2/RLINE_UserGuide_11-13-2013.pdf (last access: 24 April 2024), 2013.
Snyder, M. G., Venkatram, A., Heist, D. K., Perry, S. G., Petersen, W. B., and Isakov, V.: RLINE: A line source dispersion model for near-surface releases, Atmos. Environ., 77, 748–756, https://doi.org/10.1016/j.atmosenv.2013.05.074, 2013.
The pandas development team: Pandas-dev/pandas: Pandas, version latest, Zenodo [code], https://doi.org/10.5281/zenodo.3509134, 2020.
U.S. EPA: User's Guide for the AERMOD Meteorological Preprocessor (AERMET), Research Triangle Park, NC, Office of Air Quality, U.S. EPA, https://cfpub.epa.gov/ols/catalog/advanced_brief_record.cfm?&FIELD4=CALLNUM&INPUT4=EPA%2D454%2FB%2D19%2D028&LOGIC4=AND&COLL=&SORT_TYPE=YRDESC&item_count=1&item_accn=542377 (last access: 24 April 2024), 2004.
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image contributors: Scikit-image: Image processing in python, PeerJ, 2, e453, https://doi.org/10.7717/peerj.453, 2014.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van derWalt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Wang, J. M.: Air Quality Impacts of Vehicle Emissions on the Urban Environment: Real-World Emission Factors and Capturing the Fleet Signal, PhD, University of Toronto, http://hdl.handle.net/1807/90051 (last access: 24 April 2024), 2018.
Wang, J. M., Jeong, C.-H., Hilker, N., Shairsingh, K. K., Healy, R. M., Sofowote, U., Debosz, J., Su, Y., McGaughey, M., Doerksen, G., Munoz, T., White, L., Herod, D., and Evans, G. J.: Near-Road Air Pollutant Measurements: Accounting for Inter-Site Variability Using Emission Factors, Environ. Sci. Technol., 52, 9495–9504, https://doi.org/10.1021/acs.est.8b01914, 2018.
Waskom, M. L.: Seaborn: Statistical data visualization, Journal of Open Source Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021.
Wei, Z., Peng, J., Ma, X., Qiu, S., and Wang, S.: Toward Periodicity Correlation of Roadside PM2.5 Concentration and Traffic Volume: A Wavelet Perspective, IEEE Trans. Veh. Technol., 68, 10439–10452, https://doi.org/10.1109/tvt.2019.2944201, 2019.
Xu, J., Wang, A., Schmidt, N., Adams, M., and Hatzopoulou, M.: A gradient boost approach for predicting near-road ultrafine particle concentrations using detailed traffic characterization, Environ. Pollut., 265, 114777, https://doi.org/10.1016/j.envpol.2020.114777, 2020a.
Xu, J., Saleh, M., and Hatzopoulou, M.: A machine learning approach capturing the effects of driving behaviour and driver characteristics on trip-level emissions, Atmos. Environ., 224, 117311, https://doi.org/10.1016/j.atmosenv.2020.117311, 2020b.
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.
Zhu, Y., Hinds, W. C., Kim, S., and Sioutas, C.: Concentration and size distribution of ultrafine particles near a major highway, J. Air Waste Manag. Assoc., 52, 1032–1042, https://doi.org/10.1080/10473289.2002.10470842, 2002.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(14727 KB) - Full-text XML
Short summary
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of air pollution that were emitted by a nearby polluter from background pollution that was already in the air. The results show that machine learning and other statistical algorithms produced accurate estimates of this background pollution. These findings help scientists and regulators to understand where pollution comes from and to improve measurements of pollution from sources like traffic.
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of...