Articles | Volume 18, issue 9
https://doi.org/10.5194/amt-18-2201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of methods for resolving the contributions of local emissions to measured concentrations
Taylor D. Edwards
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Yee Ka Wong
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Cheol-Heon Jeong
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Jonathan M. Wang
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Yushan Su
Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, Ontario, Canada
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Wallberg Memorial Building, 184 College St., Toronto, Ontario, Canada
Related authors
No articles found.
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025, https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
Short summary
Nitrogen dioxide (NO2) is a pollutant with a short lifetime and large variability, but there are limited measurements of its distribution in the lower atmosphere. We present a new 3-year dataset of NO2 vertical profiles in Toronto, Canada, and evaluate it using NO2 from satellite and surface monitoring networks and simulations by an air quality forecast model. We quantify and explain the differences among the datasets to provide information that can be used to understand NO2 variability.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022, https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022, https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
Short summary
Coarse particulate matter (PM) has been shown to cause adverse health impacts, but compared to PM2.5, the source of coarse PM is less studied through field measurements. We collected chemical composition data for coarse PM in Hong Kong for a 1-year period. Using statistical models, we found that regional transport of fugitive dust is responsible for the elevated coarse PM. This work sets an example of how field measurements can be effectively utilized for evidence-based policymaking.
E. Morris, X. Liu, A. Manwar, D. Y. Zang, G. Evans, J. Brook, B. Rousseau, C. Clark, and J. MacIsaac
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-4-W2-2020, 119–126, https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-119-2020, https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-119-2020, 2020
Yee Ka Wong, X. H. Hilda Huang, Peter K. K. Louie, Alfred L. C. Yu, Damgy H. L. Chan, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 9871–9882, https://doi.org/10.5194/acp-20-9871-2020, https://doi.org/10.5194/acp-20-9871-2020, 2020
Short summary
Short summary
We present an approach to track separate contributions to PM2.5 by gasoline and diesel vehicles through a positive matrix factorization analysis of online monitoring data measurable by relatively inexpensive analytical instruments. They are PM2.5 organic and elemental carbon, C2–C9 volatile organic compounds, and nitrogen oxide concentrations. The method was demonstrated to be effective by applying monitoring data spanning 6 years (2011–2017) from a roadside environment in Hong Kong.
Nathan Hilker, Jonathan M. Wang, Cheol-Heon Jeong, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michael Noble, Anthony Munoz, Geoff Doerksen, Luc White, Céline Audette, Dennis Herod, Jeffrey R. Brook, and Greg J. Evans
Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, https://doi.org/10.5194/amt-12-5247-2019, 2019
Short summary
Short summary
Increased interest in monitoring air quality near roadways, combined with traffic's often unclear contribution to elevated concentrations, has created a need for better interpretation of these data. Using 2 years of measurements collected during a near-road monitoring project in Canada, this paper contrasts three methods for estimating the fraction of roadside pollution resulting from on-road traffic. Robustness of these methods was compared with tandem measurements at background locations.
Xiaohong Xu, Tianchu Zhang, and Yushan Su
Atmos. Chem. Phys., 19, 7335–7345, https://doi.org/10.5194/acp-19-7335-2019, https://doi.org/10.5194/acp-19-7335-2019, 2019
Short summary
Short summary
This study investigates temporal variations and long-term trends in O3 (ozone) and its precursors in Windsor, Canada. During the 1996–2015 period, NOx (nitric oxides) and non-methane hydrocarbon concentrations decreased by 58 % and 61 %, respectively. Annual O3 concentrations increased by 33 % due to (1) decreased O3 titration owing to declining NOx concentrations, (2) reduced local photochemical production of O3 because of dwindling precursor emissions, and (3) increased background O3 level.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Andrew Platt, Mike Elsasser, Lin Huang, Richard Leaitch, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Cheol-Heon Jeong, Jonathan P. D. Abbatt, and Greg J. Evans
Atmos. Chem. Phys., 18, 3485–3503, https://doi.org/10.5194/acp-18-3485-2018, https://doi.org/10.5194/acp-18-3485-2018, 2018
Short summary
Short summary
The sources of key contaminants in Arctic snow may be an important factor in understanding the rapid climate changes observed in the Arctic. Fresh snow samples collected frequently through the winter season were analyzed for major constituents. Temporally refined source apportionment via positive matrix factorization in conjunction with FLEXPART suggested potential source characteristics and locations. The identity of these sources and their relative contribution to key analytes is discussed.
Yuan You, Ralf M. Staebler, Samar G. Moussa, Yushan Su, Tony Munoz, Craig Stroud, Junhua Zhang, and Michael D. Moran
Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, https://doi.org/10.5194/acp-17-14119-2017, 2017
Short summary
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
Catherine Phillips-Smith, Cheol-Heon Jeong, Robert M. Healy, Ewa Dabek-Zlotorzynska, Valbona Celo, Jeffrey R. Brook, and Greg Evans
Atmos. Chem. Phys., 17, 9435–9449, https://doi.org/10.5194/acp-17-9435-2017, https://doi.org/10.5194/acp-17-9435-2017, 2017
Short summary
Short summary
The sources of PM2.5 components exhibited short-term variabilities, and their contributions were identified in the Athabasca oil sands region. Much of the trace elements were found to originate from anthropogenic activities, i.e., oil sands upgrading and on- and off-road transportation. Some of these anthropogenic activities became better defined and understood only through highly time-resolved measurements, which can help guide further studies and policy decisions in the oil sands area.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Sarah Hanna, Allan K. Bertram, Andrew Platt, Mike Elsasser, Lin Huang, David Tarasick, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Greg J. Evans, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 5775–5788, https://doi.org/10.5194/acp-17-5775-2017, https://doi.org/10.5194/acp-17-5775-2017, 2017
Short summary
Short summary
Rapid climate changes within the Arctic have highlighted existing uncertainties in the transport of contaminants to Arctic snow. Fresh snow samples collected frequently through the winter season were analyzed for major constituents creating a unique record of Arctic snow. Comparison with simultaneous atmospheric measurements provides insight into the driving processes in the transfer of contaminants from air to snow. The relative importance of deposition mechanisms over the season is proposed.
Alex K. Y. Lee, Megan D. Willis, Robert M. Healy, Jon M. Wang, Cheol-Heon Jeong, John C. Wenger, Greg J. Evans, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 5561–5572, https://doi.org/10.5194/acp-16-5561-2016, https://doi.org/10.5194/acp-16-5561-2016, 2016
Short summary
Short summary
Single-particle measurements from a soot-particle aerosol mass spectrometer were performed to examine the mixing state of aerosol particles in an air mass influenced by aged biomass burning. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and potassium content, and illustrate that high molecular weight organic compounds can be a key contributor to low-volatility BrC observed in biomass burning organic aerosols.
Cheol-Heon Jeong, Jon M. Wang, and Greg J. Evans
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-189, https://doi.org/10.5194/acp-2016-189, 2016
Revised manuscript not accepted
Short summary
Short summary
The source identification and quantification analysis of hourly resolved particulate matter chemical speciation data in downtown Toronto, Canada offered many advantages in terms of the identification of more sources and the resolution of more robust factor profiles and contributions. The results provide additional insight into sources of fine particle pollutants that have high temporal variations and thereby support the development of more effective control strategies for ambient pollutants.
Megan D. Willis, Robert M. Healy, Nicole Riemer, Matthew West, Jon M. Wang, Cheol-Heon Jeong, John C. Wenger, Greg J. Evans, Jonathan P. D. Abbatt, and Alex K. Y. Lee
Atmos. Chem. Phys., 16, 4693–4706, https://doi.org/10.5194/acp-16-4693-2016, https://doi.org/10.5194/acp-16-4693-2016, 2016
J. M. Wang, C.-H. Jeong, N. Zimmerman, R. M. Healy, D. K. Wang, F. Ke, and G. J. Evans
Atmos. Meas. Tech., 8, 3263–3275, https://doi.org/10.5194/amt-8-3263-2015, https://doi.org/10.5194/amt-8-3263-2015, 2015
M. L. McGuire, R. Y.-W. Chang, J. G. Slowik, C.-H. Jeong, R. M. Healy, G. Lu, C. Mihele, J. P. D. Abbatt, J. R. Brook, and G. J. Evans
Atmos. Chem. Phys., 14, 8017–8042, https://doi.org/10.5194/acp-14-8017-2014, https://doi.org/10.5194/acp-14-8017-2014, 2014
R. M. Healy, N. Riemer, J. C. Wenger, M. Murphy, M. West, L. Poulain, A. Wiedensohler, I. P. O'Connor, E. McGillicuddy, J. R. Sodeau, and G. J. Evans
Atmos. Chem. Phys., 14, 6289–6299, https://doi.org/10.5194/acp-14-6289-2014, https://doi.org/10.5194/acp-14-6289-2014, 2014
D. Mendolia, R. J. C. D'Souza, G. J. Evans, and J. Brook
Atmos. Meas. Tech., 6, 2907–2924, https://doi.org/10.5194/amt-6-2907-2013, https://doi.org/10.5194/amt-6-2907-2013, 2013
R. M. Healy, J. Sciare, L. Poulain, M. Crippa, A. Wiedensohler, A. S. H. Prévôt, U. Baltensperger, R. Sarda-Estève, M. L. McGuire, C.-H. Jeong, E. McGillicuddy, I. P. O'Connor, J. R. Sodeau, G. J. Evans, and J. C. Wenger
Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, https://doi.org/10.5194/acp-13-9479-2013, 2013
J. M. Wang, J. G. Murphy, J. A. Geddes, C. L. Winsborough, N. Basiliko, and S. C. Thomas
Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, https://doi.org/10.5194/bg-10-4371-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network
Revised methodology for CO2 and CH4 measurements at remote sites using a working standard-gas-saving system
Digitization and calibration of historical solar absorption infrared spectra from the Jungfraujoch site
Advancing N2O flux chamber measurement techniques in nutrient-poor ecosystems
Direct high-precision radon quantification for interpreting high-frequency greenhouse gas measurements
The Turbulent Enhancement Ratio as a novel Approach for Characterizing Local Emission Sources in Complex Environments
Intercomparison of fast airborne ozone instruments to measure eddy covariance fluxes: spatial variability in deposition at the ocean surface and evidence for cloud processing
Field assessments on the impact of CO2 concentration fluctuations along with complex-terrain flows on the estimation of the net ecosystem exchange of temperate forests
Multi-instrumental analysis of ozone vertical profiles and total columns in South America: comparison between subtropical and equatorial latitudes
Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors
Detection and long-term quantification of methane emissions from an active landfill
Research of low-cost air quality monitoring models with different machine learning algorithms
New insights from the Jülich Ozone Sonde Intercomparison Experiment: calibration functions traceable to one ozone reference instrument
Identification of spikes in continuous ground-based in situ time series of CO2, CH4 and CO: an extended experiment within the European ICOS Atmosphere network
Data treatment and corrections for estimating H2O and CO2 isotope fluxes from high-frequency observations
Measurements of volatile organic compounds in ambient air by gas-chromatography and real-time Vocus PTR-TOF-MS: calibrations, instrument background corrections, and introducing a PTR Data Toolkit
Development of low-cost air quality stations for next-generation monitoring networks: calibration and validation of NO2 and O3 sensors
Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise
Characterising the methane gas and environmental response of the Figaro Taguchi Gas Sensor (TGS) 2611-E00
Reducing errors on estimates of the carbon uptake period based on time series of atmospheric CO2
Generalized Kendrick analysis for improved visualization of atmospheric mass spectral data
Determination of NOx emission rates of inland ships from onshore measurements
Data quality enhancement for field experiments in atmospheric chemistry via sequential Monte Carlo filters
A flexible algorithm for network design based on information theory
Real-world wintertime CO, N2O, and CO2 emissions of a central European village
Evaluation of two common source estimation measurement strategies using large-eddy simulation of plume dispersion under neutral atmospheric conditions
Machine learning techniques to improve the field performance of low-cost air quality sensors
Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer
Importance of the Webb, Pearman, and Leuning (WPL) correction for the measurement of small CO2 fluxes
Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors
An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations
Mobile atmospheric measurements and local-scale inverse estimation of the location and rates of brief CH4 and CO2 releases from point sources
SIBaR: a new method for background quantification and removal from mobile air pollution measurements
Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability
The high-frequency response correction of eddy covariance fluxes – Part 2: An experimental approach for analysing noisy measurements of small fluxes
The high-frequency response correction of eddy covariance fluxes – Part 1: An experimental approach and its interdependence with the time-lag estimation
Uncertainty of hourly-average concentration values derived from non-continuous measurements
Emissions relationships in western forest fire plumes – Part 1: Reducing the effect of mixing errors on emission factors
A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency
Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water
High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application to Amsterdam
Towards standardized processing of eddy covariance flux measurements of carbonyl sulfide
Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland
Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers
Correcting high-frequency losses of reactive nitrogen flux measurements
Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach
InnFLUX – an open-source code for conventional and disjunct eddy covariance analysis of trace gas measurements: an urban test case
Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik
Traffic-related air pollution near roadways: discerning local impacts from background
Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment
Calum P. Wilson and Michael J. Prather
Atmos. Meas. Tech., 18, 1757–1769, https://doi.org/10.5194/amt-18-1757-2025, https://doi.org/10.5194/amt-18-1757-2025, 2025
Short summary
Short summary
We evaluated how well we can infer air pollutant levels (ozone, carbon monoxide, and nitrogen oxides) between air quality stations throughout South Korea, finding good representation in most densely measured cities in spite of intense small-scale emission hotspots. Comparing observed air quality with gridded model output is desirable, and so we created gridded datasets over South Korea using air quality station measurements, which agreed with airborne measurements around Seoul.
Motoki Sasakawa, Noritsugu Tsuda, Toshinobu Machida, Mikhail Arshinov, Denis Davydov, Aleksandr Fofonov, and Boris Belan
Atmos. Meas. Tech., 18, 1717–1730, https://doi.org/10.5194/amt-18-1717-2025, https://doi.org/10.5194/amt-18-1717-2025, 2025
Short summary
Short summary
Standard gases are essential for accurate greenhouse gas measurements. However, exchanging cylinders at remote sites presents logistical challenges, requiring systems that minimize gas consumption. We developed methods for calculating greenhouse gas mole fractions and uncertainties using our original system designed to reduce standard gas use. We validated its long-term stability through instrument comparisons. The system has proven effective for maintaining observations at remote sites.
Jamal Makkor, Mathias Palm, Matthias Buschmann, Emmanuel Mahieu, Martyn P. Chipperfield, and Justus Notholt
Atmos. Meas. Tech., 18, 1105–1114, https://doi.org/10.5194/amt-18-1105-2025, https://doi.org/10.5194/amt-18-1105-2025, 2025
Short summary
Short summary
During the years 1950 and 1951, Marcel Migeotte took regular solar measurements in the form of paper rolls at the Jungfraujoch site. These historical spectra proved to be valuable for atmospheric research and needed to be saved for posterity. Therefore, a digitization method which used image-processing techniques was developed to extract them from the historical paper rolls. This allowed them to be saved in a machine-readable format that is easily accessible to the scientific community.
Nathalie Ylenia Triches, Jan Engel, Abdullah Bolek, Timo Vesala, Maija E. Marushchak, Anna-Maria Virkkala, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-203, https://doi.org/10.5194/amt-2024-203, 2025
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores nitrous oxide (N2O) fluxes from a nutrient-poor, sub-Arctic peatland. N2O is a potent greenhouse gas; understanding its fluxes is essential for addressing global warming. Using a new instrument and flux chambers, we introduce a system to reliably detect low N2O fluxes and provide recommendations on chamber closure times and flux calculation methods to better quantify N2O fluxes. We encourage researchers to further investigate N2O fluxes in low-nutrient environments.
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025, https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Short summary
We present a protocol to improve confidence in atmospheric radon measurements, enabling site comparisons and integration with greenhouse gas data. As a natural tracer, radon provides an independent check of transport model performance. This standardized method enhances radon’s use as a metric for model evaluation. Beyond UK observatories, it can support broader networks like ICOS and WMO/GAW, advancing global atmospheric research.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, Werner Jud, Andreas Held, and Thomas Karl
EGUsphere, https://doi.org/10.5194/egusphere-2024-2939, https://doi.org/10.5194/egusphere-2024-2939, 2024
Short summary
Short summary
Air pollution management requires accurate determination of emissions and emission ratios of air pollutants. In this paper, we explore a new way to resolve excess mixing ratios in turbulent plumes, which allows aggregation of unbiased ensemble averages of air pollutant ratios that can be compared with emission models. The approach is tested in an urban environment and used to resolve emission patterns of nitrogen oxides and carbon dioxide.
Randall Chiu, Florian Obersteiner, Alessandro Franchin, Teresa Campos, Adriana Bailey, Christopher Webster, Andreas Zahn, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5731–5746, https://doi.org/10.5194/amt-17-5731-2024, https://doi.org/10.5194/amt-17-5731-2024, 2024
Short summary
Short summary
The ozone sink into oceans and marine clouds is seldom studied and highly uncertain. Calculations suggest O3 destruction at aqueous surfaces (ocean, droplets) may be strongly accelerated, but field evidence is missing. Here we compare three fast airborne O3 instruments to measure eddy covariance fluxes of O3 over the remote ocean, in clear and cloudy air. We find O3 fluxes below clouds are consistently directed into clouds, while O3 fluxes into oceans are much smaller and spatially variable.
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech., 17, 5581–5599, https://doi.org/10.5194/amt-17-5581-2024, https://doi.org/10.5194/amt-17-5581-2024, 2024
Short summary
Short summary
Dense canopy weakens turbulent mixing, leading to significant CO2 storage (Fs), a key part of net ecosystem exchange (NEE) measured using eddy covariance. Gust-biased Fs measurements complicate NEE estimation in forests with complex terrain. We analyzed gust-induced CO2 fluctuations and their impact on Fs. Fs and its contribution to NEE can be explained by terrain complexity and turbulent mixing. This work highlights how gusts over complex terrain affect the Fs and NEE measurements.
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024, https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi
Atmos. Meas. Tech., 17, 3917–3931, https://doi.org/10.5194/amt-17-3917-2024, https://doi.org/10.5194/amt-17-3917-2024, 2024
Short summary
Short summary
This study examined the transferability of machine learning calibration models among low-cost sensor units targeting NO2 and NO. The global models were evaluated under similar and different emission conditions. To counter cross-sensitivity, the study proposed integrating O3 measurements from nearby reference stations, in Switzerland. The models show substantial improvement when O3 measurements are incorporated, which is more pronounced when in regions with elevated O3 concentrations.
Pramod Kumar, Christopher Caldow, Grégoire Broquet, Adil Shah, Olivier Laurent, Camille Yver-Kwok, Sebastien Ars, Sara Defratyka, Susan Warao Gichuki, Luc Lienhardt, Mathis Lozano, Jean-Daniel Paris, Felix Vogel, Caroline Bouchet, Elisa Allegrini, Robert Kelly, Catherine Juery, and Philippe Ciais
Atmos. Meas. Tech., 17, 1229–1250, https://doi.org/10.5194/amt-17-1229-2024, https://doi.org/10.5194/amt-17-1229-2024, 2024
Short summary
Short summary
This study presents a series of mobile measurement campaigns to monitor the CH4 emissions from an active landfill. These measurements are processed using a Gaussian plume model and atmospheric inversion techniques to quantify the landfill CH4 emissions. The methane emission estimates range between ~0.4 and ~7 t CH4 per day, and their variations are analyzed. The robustness of the estimates is assessed depending on the distance of the measurements from the potential sources in the landfill.
Gang Wang, Chunlai Yu, Kai Guo, Haisong Guo, and Yibo Wang
Atmos. Meas. Tech., 17, 181–196, https://doi.org/10.5194/amt-17-181-2024, https://doi.org/10.5194/amt-17-181-2024, 2024
Short summary
Short summary
A low-cost multi-parameter air quality monitoring system (LCS) based on different machine learning algorithms is proposed. The LCS can measure particulate matter (PM) and gas pollutants simultaneously. The performance of the different algorithms (RF, MLR, KNN, BP, GA-BP) with the parameters such as R2 and RMSE are compared and discussed. These measurements indicate the LCS based on the machine learning algorithms can be used to predict the concentrations of PM and gas pollution.
Herman G. J. Smit, Deniz Poyraz, Roeland Van Malderen, Anne M. Thompson, David W. Tarasick, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 73–112, https://doi.org/10.5194/amt-17-73-2024, https://doi.org/10.5194/amt-17-73-2024, 2024
Short summary
Short summary
This paper revisits fundamentals of ECC ozonesonde measurements to develop and characterize a methodology to correct for the fast and slow time responses using the JOSIE (Jülich Ozone Sonde Intercomparison Experiment) simulation chamber data. Comparing the new corrected ozonesonde profiles to an accurate ozone UV photometer (OPM) as reference allows us to evaluate the time response correction (TRC) method and to determine calibration functions traceable to one reference with 5 % uncertainty.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5787–5810, https://doi.org/10.5194/amt-16-5787-2023, https://doi.org/10.5194/amt-16-5787-2023, 2023
Short summary
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
Andrew R. Jensen, Abigail R. Koss, Ryder B. Hales, and Joost A. de Gouw
Atmos. Meas. Tech., 16, 5261–5285, https://doi.org/10.5194/amt-16-5261-2023, https://doi.org/10.5194/amt-16-5261-2023, 2023
Short summary
Short summary
Quantification of a wide range of volatile organic compounds by proton-transfer-reaction mass spectrometry (PTR-MS) can be achieved with direct calibration of only a subset of compounds, characterization of instrument response, and simple reaction kinetics. We characterized our Vocus PTR-MS and developed a toolkit as a guide through this process. A catalytic zero air generator provided the lowest detection limits, and short, frequent calibrations informed variability in instrument response.
Alice Cavaliere, Lorenzo Brilli, Bianca Patrizia Andreini, Federico Carotenuto, Beniamino Gioli, Tommaso Giordano, Marco Stefanelli, Carolina Vagnoli, Alessandro Zaldei, and Giovanni Gualtieri
Atmos. Meas. Tech., 16, 4723–4740, https://doi.org/10.5194/amt-16-4723-2023, https://doi.org/10.5194/amt-16-4723-2023, 2023
Short summary
Short summary
We assessed calibration models for two low-cost stations equipped with O3 and NO2 metal oxide sensors. Environmental parameters had improved accuracy in linear and black box models. Moreover, interpretability methods like SHapley Additive exPlanations helped identify the physical patterns and potential problems of these models in a field validation. Results showed both sensors performed well with the same linear model form, but unique coefficients were required for intersensor variability.
Blake Actkinson and Robert J. Griffin
Atmos. Meas. Tech., 16, 3547–3559, https://doi.org/10.5194/amt-16-3547-2023, https://doi.org/10.5194/amt-16-3547-2023, 2023
Short summary
Short summary
Data collected using air quality instrumentation deployed on automobiles and driven repeatedly in Houston neighborhoods are analyzed using a novel machine learning technique. The aim is to separate large plumes from the rest of the data in order to identify the sources of the highest levels of the pollutants. The number and nature of these plumes are characterized spatially and can be linked to emissions from different types of motor vehicles.
Adil Shah, Olivier Laurent, Luc Lienhardt, Grégoire Broquet, Rodrigo Rivera Martinez, Elisa Allegrini, and Philippe Ciais
Atmos. Meas. Tech., 16, 3391–3419, https://doi.org/10.5194/amt-16-3391-2023, https://doi.org/10.5194/amt-16-3391-2023, 2023
Short summary
Short summary
As methane (CH4) contributes to global warming, more CH4 measurements are required to better characterise source emissions. Hence, we tested a cheap CH4 sensor for 338 d of landfill sampling. We derived an excellent CH4 response model in a stable environment. However, different types of air with the same CH4 level had diverse sensor responses. We characterised temperature and water vapour response but could not replicate field sampling. Thus, other species may cause sensor interactions.
Theertha Kariyathan, Ana Bastos, Julia Marshall, Wouter Peters, Pieter Tans, and Markus Reichstein
Atmos. Meas. Tech., 16, 3299–3312, https://doi.org/10.5194/amt-16-3299-2023, https://doi.org/10.5194/amt-16-3299-2023, 2023
Short summary
Short summary
The timing and duration of the carbon uptake period (CUP) are sensitive to the occurrence of major phenological events, which are influenced by recent climate change. This study presents an ensemble-based approach for quantifying the timing and duration of the CUP and their uncertainty when derived from atmospheric CO2 measurements with noise and gaps. The CUP metrics derived with the approach are more robust and have less uncertainty than when estimated with the conventional methods.
Mitchell W. Alton, Harald J. Stark, Manjula R. Canagaratna, and Eleanor C. Browne
Atmos. Meas. Tech., 16, 3273–3282, https://doi.org/10.5194/amt-16-3273-2023, https://doi.org/10.5194/amt-16-3273-2023, 2023
Short summary
Short summary
Mass spectrometric measurements of atmospheric composition routinely detect hundreds of different ions of varying chemical composition, creating challenges for visualization and data interpretation. We present a new analysis technique to facilitate visualization, while providing greater chemical insight. Additionally, it can aid in identifying the chemical composition of ions. A graphical user interface for performing the analysis is introduced and freely available, enabling broad applications.
Kai Krause, Folkard Wittrock, Andreas Richter, Dieter Busch, Anton Bergen, John P. Burrows, Steffen Freitag, and Olesia Halbherr
Atmos. Meas. Tech., 16, 1767–1787, https://doi.org/10.5194/amt-16-1767-2023, https://doi.org/10.5194/amt-16-1767-2023, 2023
Short summary
Short summary
Inland shipping is an important source of nitrogen oxides (NOx). The amount of emitted NOx depends on the characteristics of the individual vessels and the traffic density. Ship emissions are often characterised by the amount of emitted NOx per unit of burnt fuel, and further knowledge about fuel consumption is needed to quantify the total emissions caused by ship traffic. In this study, a new approach to derive absolute emission rates (in g s−1) from onshore measurements is presented.
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 1167–1178, https://doi.org/10.5194/amt-16-1167-2023, https://doi.org/10.5194/amt-16-1167-2023, 2023
Short summary
Short summary
Field experiments in atmospheric chemistry provide insights into chemical interactions of our atmosphere. However, high data coverage and accuracy are needed to enable further analysis. In this study, we explore a statistical method that combines knowledge about the chemical reactions with information from measurements to increase the quality of field experiment datasets. We test the algorithm for several applications and discuss limitations that depend on the specific variable and the dynamics.
Rona L. Thompson and Ignacio Pisso
Atmos. Meas. Tech., 16, 235–246, https://doi.org/10.5194/amt-16-235-2023, https://doi.org/10.5194/amt-16-235-2023, 2023
Short summary
Short summary
Atmospheric networks are used for monitoring air quality and greenhouse gases and can provide essential information about the sources and sinks. The design of the network, specifically where to place the observations, is a critical question in order to maximize the information provided while minimizing the cost. Here, a novel method of designing atmospheric networks is presented with two examples, one on monitoring sources of methane and the second on monitoring fossil fuel emissions of CO2.
László Haszpra, Zoltán Barcza, Zita Ferenczi, Roland Hollós, Anikó Kern, and Natascha Kljun
Atmos. Meas. Tech., 15, 5019–5031, https://doi.org/10.5194/amt-15-5019-2022, https://doi.org/10.5194/amt-15-5019-2022, 2022
Short summary
Short summary
A novel approach is used for the determination of greenhouse gas (GHG) emissions of small rural settlements, which may significantly differ from those of urban regions and have hardly been studied yet. Among other results, it turned out that wintertime nitrous oxide emission is significantly underestimated in the official emission inventories. Given the large number of such settlements, the underestimation may also distort the national total emission values reported to international databases.
Anja Ražnjević, Chiel van Heerwaarden, and Maarten Krol
Atmos. Meas. Tech., 15, 3611–3628, https://doi.org/10.5194/amt-15-3611-2022, https://doi.org/10.5194/amt-15-3611-2022, 2022
Short summary
Short summary
We evaluate two widely used observational techniques (Other Test Method (OTM) 33A and car drive-bys) that estimate point source gas emissions. We performed our analysis on high-resolution plume dispersion simulation. For car drive-bys we found that at least 15 repeated measurements were needed to get within 40 % of the true emissions. OTM 33A produced large errors in estimation (50 %–200 %) due to its sensitivity to dispersion coefficients and underlying simplifying assumptions.
Tony Bush, Nick Papaioannou, Felix Leach, Francis D. Pope, Ajit Singh, G. Neil Thomas, Brian Stacey, and Suzanne Bartington
Atmos. Meas. Tech., 15, 3261–3278, https://doi.org/10.5194/amt-15-3261-2022, https://doi.org/10.5194/amt-15-3261-2022, 2022
Short summary
Short summary
Poor air quality is a human health risk which demands high-spatiotemporal-resolution monitoring data to manage. Low-cost air quality sensors present a convenient pathway to delivering these needs, compared to traditional methods, but bring methodological challenges which can limit operational ability. In this study within Oxford, UK, we develop machine learning methods to improve the quality of low-cost sensors for NO2, PM10 (particulate matter) and PM2.5 and demonstrate their effectiveness.
Lisa J. Beck, Siegfried Schobesberger, Mikko Sipilä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Meas. Tech., 15, 1957–1965, https://doi.org/10.5194/amt-15-1957-2022, https://doi.org/10.5194/amt-15-1957-2022, 2022
Short summary
Short summary
Sulfuric acid is known to be a main compound in atmospheric new particle formation. Yet, its concentration is very low, which leads to challenges in detecting it. In our study, we derive the sulfuric acid concentration from measurements of ambient ions with a mass spectrometer. Our validation shows that the theoretical approach using the bisulfate ion and its clusters with H2SO4 captures the sulfuric acid concentration very well during daytime.
Katharina Jentzsch, Julia Boike, and Thomas Foken
Atmos. Meas. Tech., 14, 7291–7296, https://doi.org/10.5194/amt-14-7291-2021, https://doi.org/10.5194/amt-14-7291-2021, 2021
Short summary
Short summary
Very small CO2 fluxes are measured at night in Arctic regions. If the sensible heat flux is not close to zero under these conditions, the WPL correction will take values on the order of the flux. A special quality control is proposed for these cases.
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021, https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
Short summary
The last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments. This study introduces a seven-step methodology for the field calibration of low-cost sensors with user-friendly guidelines, open-access code, and a discussion of common barriers. Our goal with this work is to push for standardized reporting of methods, make critical data processing steps clear for users, and encourage responsible use in the scientific community and beyond.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Pramod Kumar, Grégoire Broquet, Camille Yver-Kwok, Olivier Laurent, Susan Gichuki, Christopher Caldow, Ford Cropley, Thomas Lauvaux, Michel Ramonet, Guillaume Berthe, Frédéric Martin, Olivier Duclaux, Catherine Juery, Caroline Bouchet, and Philippe Ciais
Atmos. Meas. Tech., 14, 5987–6003, https://doi.org/10.5194/amt-14-5987-2021, https://doi.org/10.5194/amt-14-5987-2021, 2021
Short summary
Short summary
This study presents a simple atmospheric inversion modeling framework for the localization and quantification of unknown CH4 and CO2 emissions from point sources based on near-surface mobile concentration measurements and a Gaussian plume dispersion model. It is applied for the estimate of a series of brief controlled releases of CH4 and CO2 with a wide range of rates during the TOTAL TADI-2018 experiment. Results indicate a ~10 %–40 % average error on the estimate of the release rates.
Blake Actkinson, Katherine Ensor, and Robert J. Griffin
Atmos. Meas. Tech., 14, 5809–5821, https://doi.org/10.5194/amt-14-5809-2021, https://doi.org/10.5194/amt-14-5809-2021, 2021
Short summary
Short summary
This paper describes the development of a new method used to estimate background from mobile monitoring time series. The method is tested on a previously published dataset, applied to an extensive mobile dataset, and compared with other previously published techniques used to estimate background. The results suggest that the method is a promising framework for background estimation.
Peer Nowack, Lev Konstantinovskiy, Hannah Gardiner, and John Cant
Atmos. Meas. Tech., 14, 5637–5655, https://doi.org/10.5194/amt-14-5637-2021, https://doi.org/10.5194/amt-14-5637-2021, 2021
Short summary
Short summary
Machine learning (ML) calibration techniques could be an effective way to improve the performance of low-cost air pollution sensors. Here we provide novel insights from case studies within the urban area of London, UK, where we compared the performance of three ML techniques to calibrate low-cost measurements of NO2 and PM10. In particular, we highlight the key issue of the method-dependent robustness in maintaining calibration skill after transferring sensors to different measurement sites.
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021, https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
László Haszpra and Ernő Prácser
Atmos. Meas. Tech., 14, 3561–3571, https://doi.org/10.5194/amt-14-3561-2021, https://doi.org/10.5194/amt-14-3561-2021, 2021
Short summary
Short summary
Most of the tall-tower greenhouse gas observatories apply a single gas analyzer for the sequential sampling of several intakes along the tower. The non-continuous sampling at each intake introduces excess uncertainty to the calculated hourly-average concentrations used in several applications. Based on real-world measurements, the paper systematically assesses this type of uncertainty.
Robert B. Chatfield, Meinrat O. Andreae, ARCTAS Science Team, and SEAC4RS Science Team
Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020, https://doi.org/10.5194/amt-13-7069-2020, 2020
Short summary
Short summary
Forest burning affects air pollution and global climate. A NASA aircraft studied fire emissions including the Rim Fire near Yosemite. We found frequent confusions between the actual fire emission factors and other effects on the air samples. Effects on CO2 and CO can originate far upwind; the gases can mix variably into a smoke plume. We devised a theory of constant features in plumes. A statistical mixed-effects analysis of a co-emitted tracers model disentangles such mixing from fire effects.
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020, https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Short summary
The time response of electrochemical concentration cell (ECC) ozonesondes points to at least two distinct reaction pathways with time constants of approximately 20 s and 25 min. Properly considering these time constants eliminates the need for a poorly defined "background" and allows reducing ad hoc corrections based on laboratory tests. This reduces the uncertainty of ECC ozonesonde measurements throughout the profile and especially in regions of low ozone and strong gradients of ozone.
Fan Zhou, Liwei Hou, Rui Zhong, Wei Chen, Xunpeng Ni, Shengda Pan, Ming Zhao, and Bowen An
Atmos. Meas. Tech., 13, 4899–4909, https://doi.org/10.5194/amt-13-4899-2020, https://doi.org/10.5194/amt-13-4899-2020, 2020
Short summary
Short summary
On 15 July 2019, using an unmanned aerial vehicle (UAV), maritime authorities ferreted out a sailing ship whose fuel sulfur content (FSC) failed to meet Chinese regulations. This was the first time that a sailing ship had been caught for having failed the FSC regulations in China. The UAV system, method, and monitoring result utilized are discussed in this paper. We recommend that emissions from sailing ships be monitored more often in the open water in the future.
Bas Mijling
Atmos. Meas. Tech., 13, 4601–4617, https://doi.org/10.5194/amt-13-4601-2020, https://doi.org/10.5194/amt-13-4601-2020, 2020
Short summary
Short summary
Many cities are experimenting with networks of low-cost sensors, complementary to their reference stations. Often the observations are published as dots on a map, as spatial interpolation is far from trivial. A new methodology to assimilate observations of different accuracy in a generic urban-air-quality model is introduced. It can be used for mapping local air quality based on reference measurements only or as a framework to integrate low-cost measurements next to official measurements.
Kukka-Maaria Kohonen, Pasi Kolari, Linda M. J. Kooijmans, Huilin Chen, Ulli Seibt, Wu Sun, and Ivan Mammarella
Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020, https://doi.org/10.5194/amt-13-3957-2020, 2020
Short summary
Short summary
Biosphere–atmosphere gas exchange (flux) measurements of carbonyl sulfide (COS) are becoming popular for estimating biospheric photosynthesis. To compare COS flux measurements across different measurement sites, we need standardized protocols for data processing. We analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we aim to settle on a set of recommended protocols for COS flux calculation.
Michael Müller, Peter Graf, Jonas Meyer, Anastasia Pentina, Dominik Brunner, Fernando Perez-Cruz, Christoph Hüglin, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 3815–3834, https://doi.org/10.5194/amt-13-3815-2020, https://doi.org/10.5194/amt-13-3815-2020, 2020
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Pascal Wintjen, Christof Ammann, Frederik Schrader, and Christian Brümmer
Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, https://doi.org/10.5194/amt-13-2923-2020, 2020
Short summary
Short summary
With recent technological advances it is now possible to measure the exchange of trace gases between the land surface and the atmosphere. When using the so-called eddy-covariance method, certain corrections need to be applied to account for attenuation in the flux signal. These losses were found to be setup- and site-specific and can be up to 38 % for reactive nitrogen fluxes. We evaluated five different methods and recommend using an empirical version with locally measured cospectra.
Martin Kunz, Jost V. Lavric, Rainer Gasche, Christoph Gerbig, Richard H. Grant, Frank-Thomas Koch, Marcus Schumacher, Benjamin Wolf, and Matthias Zeeman
Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020, https://doi.org/10.5194/amt-13-1671-2020, 2020
Short summary
Short summary
The nocturnal boundary layer (NBL) budget method enables the quantification of gas fluxes between ecosystems and the atmosphere under nocturnal stable stratification, a condition under which standard approaches struggle. However, up to now the application of the NBL method has been limited by difficulties in obtaining the required measurements. We show how an unmanned aircraft system (UAS) equipped with a carbon dioxide analyser can make this method more accessible.
Marcus Striednig, Martin Graus, Tilmann D. Märk, and Thomas G. Karl
Atmos. Meas. Tech., 13, 1447–1465, https://doi.org/10.5194/amt-13-1447-2020, https://doi.org/10.5194/amt-13-1447-2020, 2020
Short summary
Short summary
The current work summarizes a long-term effort to provide an open-source code for the analysis of turbulent fluctuations of trace gases in the atmosphere by eddy covariance and disjunct eddy covariance, with a special focus on reactive gases that participate in atmospheric chemistry. The performance of the code is successfully evaluated based on measurements of minute fluxes of non-methane volatile organic compounds into the urban atmosphere.
Friedemann Reum, Mathias Göckede, Jost V. Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt, and Martin Heimann
Atmos. Meas. Tech., 12, 5717–5740, https://doi.org/10.5194/amt-12-5717-2019, https://doi.org/10.5194/amt-12-5717-2019, 2019
Short summary
Short summary
We present continuous in situ measurements of atmospheric CO2 and CH4 mole fractions at the new station Ambarchik, located in northeastern Siberia. We describe the site, measurements and quality control, characterize the signals in comparison with data from Barrow, Alaska, and show which regions the measurements are sensitive to. Ambarchik data are available upon request.
Nathan Hilker, Jonathan M. Wang, Cheol-Heon Jeong, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michael Noble, Anthony Munoz, Geoff Doerksen, Luc White, Céline Audette, Dennis Herod, Jeffrey R. Brook, and Greg J. Evans
Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, https://doi.org/10.5194/amt-12-5247-2019, 2019
Short summary
Short summary
Increased interest in monitoring air quality near roadways, combined with traffic's often unclear contribution to elevated concentrations, has created a need for better interpretation of these data. Using 2 years of measurements collected during a near-road monitoring project in Canada, this paper contrasts three methods for estimating the fraction of roadside pollution resulting from on-road traffic. Robustness of these methods was compared with tandem measurements at background locations.
Laura Cartwright, Andrew Zammit-Mangion, Sangeeta Bhatia, Ivan Schroder, Frances Phillips, Trevor Coates, Karita Negandhi, Travis Naylor, Martin Kennedy, Steve Zegelin, Nick Wokker, Nicholas M. Deutscher, and Andrew Feitz
Atmos. Meas. Tech., 12, 4659–4676, https://doi.org/10.5194/amt-12-4659-2019, https://doi.org/10.5194/amt-12-4659-2019, 2019
Short summary
Short summary
Despite extensive research, emission detection and quantification of greenhouse gases (GHGs) remain an open problem. This article presents a novel statistical framework for detecting and quantifying methane emissions and showcases its efficacy on data collected from different instruments in the 2015 Ginninderra controlled-release experiment. The developed techniques can be used to aid GHG emission reduction schemes by, for example, detecting and quantifying leaks from carbon storage facilities.
Cited articles
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 25 July 2019, Anchorage, Alaska, USA, https://doi.org/10.1145/3292500.3330701, 2019.
Arunachalam, S., Valencia, A., Akita, Y., Serre, M., Omary, M., Garcia, V., and Isakov, V.: A Method for Estimating Urban Background Concentrations in Support of Hybrid Air Pollution Modeling for Environmental Health Studies, Int. J. Environ. Res. Public. Health, 11, 10518–10536, https://doi.org/10.3390/ijerph111010518, 2014.
Celles, S., Filipe, Kittner, J., Quick, J., Weber, S., lubyant, strawberry beach sandals, Ogasawara, I., Bachant, P., Partanen, J., Kassem, H., Maussion, F., Schmidt, J., Kvalsvik, J., Uieda, L., Miguel R, Raj, S. P., Stas, McCann, J., and sspagnol: python-windrose/windrose: v1.9.2 (v1.9.2), Zenodo [code], https://doi.org/10.5281/zenodo.13133010, 2024.
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD'16, ACM, 13–17 August 2016, San Francisco, California, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Crameri, F.: Scientific colour maps (8.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.8409685, 2023.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
da Costa-Luis, C., Larroque, S. K., Altendorf, K., Mary, H., richardsheridan, Korobov, M., Yorav-Raphael, N., Ivanov, I., Bargull, M., Rodrigues, N., Shawn, Dektyarev, M., Górny, M., mjstevens777, Pagel, M. D., Zugnoni, M., JC, CrazyPython, Newey, C., Lee, A., pgajdos, Todd, Malmgren, S., redbug312, Desh, O., Nechaev, N., Boyle, M., Nordlund, M., MapleCCC, and McCracken, J.: tqdm: A fast, Extensible Progress Bar for Python and CLI (v4.67.1), Zenodo [code], https://doi.org/10.5281/zenodo.14231923, 2024.
Environmental Protection Agency: Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM10 Nonattainment and Maintenance Areas – Appendices, Environmental Protection Agency, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/20101201_otaq_epa-420_b-10-040_transport_conform_hot-spot_analysis_appx.pdf (last access: 24 April 2025), 2010.
Frey, H. C., Grieshop, A. P., Khlystov, A., Bang, J. J., Rouphail, N., Guinnessa, J., Rodriguez, D., Fuentes, M., Saha, P., Brantley, H., Snyder, M., Tanvir, S., Ko, K., Noussi, T., Delavarrafiee, M., and Singh, S.: Characterizing Determinants of Near-Road Ambient Air Quality for an Urban Intersection and a Freeway Site, Health Effects Institute, ISSN 2688-6855, 2022.
Fushimi, A., Kawashima, H., and Kajihara, H.: Source apportionment based on an atmospheric dispersion model and multiple linear regression analysis, Atmos. Environ., 39, 1323–1334, https://doi.org/10.1016/j.atmosenv.2004.11.009, 1997.
Gómez-Losada, Á., Pires, J. C. M., and Pino-Mejías, R.: Characterization of background air pollution exposure in urban environments using a metric based on Hidden Markov Models, Atmos. Environ., 127, 255–261, https://doi.org/10.1016/j.atmosenv.2015.12.046, 2016.
Gómez-Losada, Á., Pires, J. C. M., and Pino-Mejías, R.: Modelling background air pollution exposure in urban environments: Implications for epidemiological research, Environ. Model. Softw., 106, 13–21, https://doi.org/10.1016/j.envsoft.2018.02.011, 2018.
Harris, C. R., Millman, K. J., van derWalt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Hashad, K., Yang, B., Iskov, V., and Zhang, K. M.: A Computationally Efficient Approach to Resolving Vehicle-Induced Turbulence for Near-Road Air Quality, ASME J. Eng. Sustain. Build. Cities, 3, 031001, https://doi.org/10.1115/1.4055640, 2022.
Hicks, W., Beevers, S., Tremper, A. H., Stewart, G., Priestman, M., Kelly, F. J., Lanoisellé, M., Lowry, D., and Green, D. C.: Quantification of non-exhaust particulate matter traffic emissions and the impact of COVID-19 lockdown at London Marylebone road, Atmosphere, 12, 190, https://doi.org/10.3390/atmos12020190, 2021.
Hilker, N., Wang, J. M., Jeong, C.-H., Healy, R. M., Sofowote, U., Debosz, J., Su, Y., Noble, M., Munoz, A., Doerksen, G., White, L., Audette, C., Herod, D., Brook, J. R., and Evans, G. J.: Traffic-related air pollution near roadways: discerning local impacts from background, Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, 2019.
Hunter, J. D.: Matplotlib: A 2d graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Jeong, C.-H., Traub, A., Huang, A., Hilker, N., Wang, J. M., Herod, D., Dabek-Zlotorzynska, E., Celo, V., and Evans, G. J.: Long-term analysis of PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative potential, Environ. Pollut., 263, 114652, https://doi.org/10.1016/j.envpol.2020.114652, 2020.
Klems, J. P., Pennington, M. R., Zordan, C. A., and Johnston, M. V.: Ultrafine particles near a roadway intersection: Origin and apportionment of fast changes in concentration, Environ. Sci. Technol., 44, 7903–7907, https://doi.org/10.1021/es102009e, 2010.
Kohler, M., Corsmeier, U., Vogt, U., and Vogel, B.: Estimation of gaseous real-world traffic emissions downstream a motorway, Atmos. Environ., 39, 5665–5684, https://doi.org/10.1016/j.atmosenv.2004.09.088, 2005.
Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E., and Mabury, S. A.: Identification of the Major Sources Contributing to PM2.5 Observed in Toronto, Environ. Sci. Technol., 37, 4831–4840, https://doi.org/10.1021/es026473i, 2003.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, 31st Conference on Neural Information Processing Systems (NIPS 2017), 4–9 December 2017, Long Beach, CA, USA, ISBN 9781510860964, 2017.
Morris, E., Liu, X., Manwar, A., Zang, D. Y., Evans, G., Brook, J., Rousseau, B., Clark, C., and MacIsaac, J.: APPLICATION OF DISTRIBUTED URBAN SENSOR NETWORKS FOR ACTIONABLE AIR QUALITY DATA, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-4/W2-2020, 119–126, https://doi.org/10.5194/isprs-annals-VI-4-W2-2020-119-2020, 2020.
National Centers for Environmental Information: Integrated Surface Database (ISD), National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database (last access: 24 April 2025), 2025.
National Oceanic and Atmospheric Administration: ESRL Radiosonde Database, National Oceanic and Atmospheric Administration [data set], https://web.archive.org/web/20240927233232/https://ruc.noaa.gov/raobs/ (last access: 12 April 2024), 2024.
Olaguer, E.: Twenty-First Century Tools for Environmental Protection: Real-Time Monitoring, Fine-Scale Modelling and Advanced Analytics for Air Quality Applications, in: Next Generation Ambient Air Monitoring Conference, 14 September 2022, London, Ontario, Canada, 2022.
Ontario: Ontario Regulation 167/12: Vehicle Weights And Dimensions – For Safe, Productive And Infrastructure-Friendly Vehicles, The Ontario Gazette, Provincial Government of Ontario, https://www.ontario.ca/laws/regulation/r12167 (last access: 24 April 2025), 2012.
Ontario Ministry of Transportation: Provincial Highways Traffic Volumes 1988–2019, Ontario Ministry of Transportation, https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/tvSplash.aspx (last access: 24 April 2025), 2021.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Rodríguez, J., Villalobos, A. M., Castro-Molinare, J., and Jorquera, H.: Local and NON-LOCAL source apportionment of black carbon and combustion generated PM2.5, Environ. Pollut., 346, 123568, https://doi.org/10.1016/j.envpol.2024.123568, 2024.
Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer, M. K., O'Doherty, S., Buchmann, B., and Hueglin, C.: Robust extraction of baseline signal of atmospheric trace species using local regression, Atmos. Meas. Tech., 5, 2613–2624, https://doi.org/10.5194/amt-5-2613-2012, 2012.
Sabaliauskas, K., Jeong, C.-H., Yao, X., and Evans, G. J.: The application of wavelet decomposition to quantify the local and regional sources of ultrafine particles in cities, Atmos. Environ., 95, 249–257, https://doi.org/10.1016/j.atmosenv.2014.05.035, 2014.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical modeling with python, in: 9th Python in Science Conference, 28 June 2010, Austin, Texas, USA, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Smith, N. J., Wardrop, M., Hudon, C., broessli, Quackenbush, P., Seabold, S., Portnoy, A., Beasley, B., Davidson-Pilon, C., Kibirige, H., Leinweber, K., Sheppard, K., Humber, M., Colange, M., Hudson-Doyle, M., Korenčiak, M., and Gates, T.: pydata/patsy: v0.5.6 (v0.5.6), Zenodo [code], https://doi.org/10.5281/zenodo.10459707, 2024.
Snyder, M. G. and Heist, D. K.: User's guide for R-LINE Model Version 1.2; A Research LINE source model for near-surface releases, United States EPA, 1–33, https://www.cmascenter.org/r-line/documentation/1.2/RLINE_UserGuide_11-13-2013.pdf (last access: 24 April 2024), 2013.
Snyder, M. G., Venkatram, A., Heist, D. K., Perry, S. G., Petersen, W. B., and Isakov, V.: RLINE: A line source dispersion model for near-surface releases, Atmos. Environ., 77, 748–756, https://doi.org/10.1016/j.atmosenv.2013.05.074, 2013.
The pandas development team: Pandas-dev/pandas: Pandas, version latest, Zenodo [code], https://doi.org/10.5281/zenodo.3509134, 2020.
U.S. EPA: User's Guide for the AERMOD Meteorological Preprocessor (AERMET), Research Triangle Park, NC, Office of Air Quality, U.S. EPA, https://cfpub.epa.gov/ols/catalog/advanced_brief_record.cfm?&FIELD4=CALLNUM&INPUT4=EPA%2D454%2FB%2D19%2D028&LOGIC4=AND&COLL=&SORT_TYPE=YRDESC&item_count=1&item_accn=542377 (last access: 24 April 2024), 2004.
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image contributors: Scikit-image: Image processing in python, PeerJ, 2, e453, https://doi.org/10.7717/peerj.453, 2014.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van derWalt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Wang, J. M.: Air Quality Impacts of Vehicle Emissions on the Urban Environment: Real-World Emission Factors and Capturing the Fleet Signal, PhD, University of Toronto, http://hdl.handle.net/1807/90051 (last access: 24 April 2024), 2018.
Wang, J. M., Jeong, C.-H., Hilker, N., Shairsingh, K. K., Healy, R. M., Sofowote, U., Debosz, J., Su, Y., McGaughey, M., Doerksen, G., Munoz, T., White, L., Herod, D., and Evans, G. J.: Near-Road Air Pollutant Measurements: Accounting for Inter-Site Variability Using Emission Factors, Environ. Sci. Technol., 52, 9495–9504, https://doi.org/10.1021/acs.est.8b01914, 2018.
Waskom, M. L.: Seaborn: Statistical data visualization, Journal of Open Source Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021.
Wei, Z., Peng, J., Ma, X., Qiu, S., and Wang, S.: Toward Periodicity Correlation of Roadside PM2.5 Concentration and Traffic Volume: A Wavelet Perspective, IEEE Trans. Veh. Technol., 68, 10439–10452, https://doi.org/10.1109/tvt.2019.2944201, 2019.
Xu, J., Wang, A., Schmidt, N., Adams, M., and Hatzopoulou, M.: A gradient boost approach for predicting near-road ultrafine particle concentrations using detailed traffic characterization, Environ. Pollut., 265, 114777, https://doi.org/10.1016/j.envpol.2020.114777, 2020a.
Xu, J., Saleh, M., and Hatzopoulou, M.: A machine learning approach capturing the effects of driving behaviour and driver characteristics on trip-level emissions, Atmos. Environ., 224, 117311, https://doi.org/10.1016/j.atmosenv.2020.117311, 2020b.
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.
Zhu, Y., Hinds, W. C., Kim, S., and Sioutas, C.: Concentration and size distribution of ultrafine particles near a major highway, J. Air Waste Manag. Assoc., 52, 1032–1042, https://doi.org/10.1080/10473289.2002.10470842, 2002.
Short summary
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of air pollution that were emitted by a nearby polluter from background pollution that was already in the air. The results show that machine learning and other statistical algorithms produced accurate estimates of this background pollution. These findings help scientists and regulators to understand where pollution comes from and to improve measurements of pollution from sources like traffic.
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of...