Articles | Volume 18, issue 10
https://doi.org/10.5194/amt-18-2279-2025
https://doi.org/10.5194/amt-18-2279-2025
Research article
 | 
27 May 2025
Research article |  | 27 May 2025

Combining commercial microwave links and weather radar for classification of dry snow and rainfall

Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen

Related authors

Open-source tools for processing opportunistic rainfall sensor data: An overview of existing tools and the new OpenSense software packages poligrain, pypwsqc and mergeplg
Christian Chwala, Aart Overeem, Erlend Øydvin, Louise Petersson Wårdh, Jochen Seidel, Maximilian Graf, Bas Walraven, Elia Covi, Hai Victor Habi, Martin Fencl, Lotte de Vos, Filippo Giannetti, Amy Green, Tess O’Hara, Nico Blettner, Tom Keel, Georges Schutz, Abbas El Hachem, Nicholas Illich, Julius Polz, Taoufiq Shit, Lukáš Kaleta, Damaris Zulkarnaen, and Vojtěch Bareš
EGUsphere, https://doi.org/10.5194/egusphere-2025-5438,https://doi.org/10.5194/egusphere-2025-5438, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Improving weather radar rainfall estimates by merging with commercial microwave link data: a fully reproducible, large-scale method intercomparison
Erlend Øydvin, Elia Covi, Maximilian Graf, and Christian Chwala
EGUsphere, https://doi.org/10.5194/egusphere-2025-6371,https://doi.org/10.5194/egusphere-2025-6371, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Technical note: A simple feedforward artificial neural network for high-temporal-resolution rain event detection using signal attenuation from commercial microwave links
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
Hydrol. Earth Syst. Sci., 28, 5163–5171, https://doi.org/10.5194/hess-28-5163-2024,https://doi.org/10.5194/hess-28-5163-2024, 2024
Short summary

Cited articles

Berne, A. and Krajewski, W.: Radar for hydrology: Unfulfilled promise or unrecognized potential?, Adv. Water Resour., 51, 357–366, https://doi.org/10.1016/j.advwatres.2012.05.005, 2013. a
Blettner, N., Fencl, M., Bareš, V., Kunstmann, H., and Chwala, C.: Transboundary Rainfall Estimation Using Commercial Microwave Links, Earth and Space Science, 10, e2023EA002869, https://doi.org/10.1029/2023EA002869, 2023. a, b
Bloemink, H.: Precipitation type from the Thies disdrometer, in: WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation (TECO-2005), Bucharest, Romania, 4–7 May 2005, World Meteorological Organization, Report No. 82, WMO/TD-No. 1265, 1–7, https://library.wmo.int/viewer/41919/download?file=wmo-td_1265.pdf&type=pdf&navigator=1 (last access: 23 January 2025), 2005. a
Casellas, E., Bech, J., Veciana, R., Pineda, N., Miró, J. R., Moré, J., Rigo, T., and Sairouni, A.: Nowcasting the precipitation phase combining weather radar data, surface observations, and NWP model forecasts, Q. J. Roy. Meteor. Soc., 147, 3135–3153, https://doi.org/10.1002/qj.4121, 2021. a, b
Chandrasekar, V., Keränen, R., Lim, S., and Moisseev, D.: Recent advances in classification of observations from dual polarization weather radars, Atmos. Res., 119, 97–111, https://doi.org/10.1016/j.atmosres.2011.08.014, 2013. a
Download
Short summary
We present a novel method for classifying rain and snow by combining data from commercial microwave links (CMLs) with weather radar. We compare this to a reference method using dew point temperature for precipitation type classification. Evaluations with nearby disdrometers show that CMLs improve the classification of dry snow and rainfall, outperforming the reference method.
Share