Articles | Volume 18, issue 10
https://doi.org/10.5194/amt-18-2279-2025
https://doi.org/10.5194/amt-18-2279-2025
Research article
 | 
27 May 2025
Research article |  | 27 May 2025

Combining commercial microwave links and weather radar for classification of dry snow and rainfall

Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen

Related authors

Technical note: A simple feedforward artificial neural network for high-temporal-resolution rain event detection using signal attenuation from commercial microwave links
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
Hydrol. Earth Syst. Sci., 28, 5163–5171, https://doi.org/10.5194/hess-28-5163-2024,https://doi.org/10.5194/hess-28-5163-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improved consistency in solar-induced fluorescence retrievals from GOME-2A with the SIFTER v3 algorithm
Juliëtte C. S. Anema, K. Folkert Boersma, Lieuwe G. Tilstra, Olaf N. E. Tuinder, and Willem W. Verstraeten
Atmos. Meas. Tech., 18, 1961–1979, https://doi.org/10.5194/amt-18-1961-2025,https://doi.org/10.5194/amt-18-1961-2025, 2025
Short summary
An information content approach to diagnosing and improving CLIMCAPS retrieval consistency across instruments and satellites
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 18, 1823–1839, https://doi.org/10.5194/amt-18-1823-2025,https://doi.org/10.5194/amt-18-1823-2025, 2025
Short summary
Characterizing urban planetary boundary layer dynamics using 3-year Doppler wind lidar measurements in a western Yangtze River Delta city, China
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025,https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Radar-based high-resolution ensemble precipitation analyses over the French Alps
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
Atmos. Meas. Tech., 18, 1731–1755, https://doi.org/10.5194/amt-18-1731-2025,https://doi.org/10.5194/amt-18-1731-2025, 2025
Short summary
Gravity waves above the northern Atlantic and Europe during streamer events using Aeolus
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025,https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary

Cited articles

Berne, A. and Krajewski, W.: Radar for hydrology: Unfulfilled promise or unrecognized potential?, Adv. Water Resour., 51, 357–366, https://doi.org/10.1016/j.advwatres.2012.05.005, 2013. a
Blettner, N., Fencl, M., Bareš, V., Kunstmann, H., and Chwala, C.: Transboundary Rainfall Estimation Using Commercial Microwave Links, Earth and Space Science, 10, e2023EA002869, https://doi.org/10.1029/2023EA002869, 2023. a, b
Bloemink, H.: Precipitation type from the Thies disdrometer, in: WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation (TECO-2005), Bucharest, Romania, 4–7 May 2005, World Meteorological Organization, Report No. 82, WMO/TD-No. 1265, 1–7, https://library.wmo.int/viewer/41919/download?file=wmo-td_1265.pdf&type=pdf&navigator=1 (last access: 23 January 2025), 2005. a
Casellas, E., Bech, J., Veciana, R., Pineda, N., Miró, J. R., Moré, J., Rigo, T., and Sairouni, A.: Nowcasting the precipitation phase combining weather radar data, surface observations, and NWP model forecasts, Q. J. Roy. Meteor. Soc., 147, 3135–3153, https://doi.org/10.1002/qj.4121, 2021. a, b
Chandrasekar, V., Keränen, R., Lim, S., and Moisseev, D.: Recent advances in classification of observations from dual polarization weather radars, Atmos. Res., 119, 97–111, https://doi.org/10.1016/j.atmosres.2011.08.014, 2013. a
Download
Short summary
We present a novel method for classifying rain and snow by combining data from commercial microwave links (CMLs) with weather radar. We compare this to a reference method using dew point temperature for precipitation type classification. Evaluations with nearby disdrometers show that CMLs improve the classification of dry snow and rainfall, outperforming the reference method.
Share