Articles | Volume 18, issue 12
https://doi.org/10.5194/amt-18-2781-2025
https://doi.org/10.5194/amt-18-2781-2025
Research article
 | 
27 Jun 2025
Research article |  | 27 Jun 2025

Exploring the effect of training set size and number of categories on ice crystal classification through a contrastive semi-supervised learning algorithm

Yunpei Chu, Huiying Zhang, Xia Li, and Jan Henneberger

Related authors

Impact of seeder-feeder cloud interaction on precipitation formation: a case study based on extensive remote-sensing, in-situ and model data
Kevin Ohneiser, Patric Seifert, Willi Schimmel, Fabian Senf, Tom Gaudek, Martin Radenz, Audrey Teisseire, Veronika Ettrichrätz, Teresa Vogl, Nina Maherndl, Nils Pfeifer, Jan Henneberger, Anna J. Miller, Nadja Omanovic, Christopher Fuchs, Huiying Zhang, Fabiola Ramelli, Robert Spirig, Anton Kötsche, Heike Kalesse-Los, Maximilian Maahn, Heather Corden, Alexis Berne, Majid Hajipour, Hannes Griesche, Julian Hofer, Ronny Engelmann, Annett Skupin, Albert Ansmann, and Holger Baars
EGUsphere, https://doi.org/10.5194/egusphere-2025-2482,https://doi.org/10.5194/egusphere-2025-2482, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Quantified ice-nucleating ability of AgI-containing seeding particles in natural clouds
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025,https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary
Quantifying ice crystal growth rates in natural clouds from glaciogenic cloud seeding experiments
Christopher Fuchs, Fabiola Ramelli, Anna J. Miller, Nadja Omanovic, Robert Spirig, Huiying Zhang, Patric Seifert, Kevin Ohneiser, Ulrike Lohmann, and Jan Henneberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-688,https://doi.org/10.5194/egusphere-2025-688, 2025
Short summary
Putting the spotlight on small cloud droplets with SmHOLIMO – A new holographic imager for in situ measurements of clouds
Christopher Fuchs, Fabiola Ramelli, David Schweizer, Ulrike Lohmann, and Jan Henneberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3695,https://doi.org/10.5194/egusphere-2024-3695, 2025
Short summary
IceDetectNet: a rotated object detection algorithm for classifying components of aggregated ice crystals with a multi-label classification scheme
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024,https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Convolutional neural networks for specific and merged data sets of optical array probe images: compatibility of retrieved morphology-dependent size distributions
Louis Jaffeux, Jan Breiner, Pierre Coutris, and Alfons Schwarzenböck
Atmos. Meas. Tech., 18, 2311–2331, https://doi.org/10.5194/amt-18-2311-2025,https://doi.org/10.5194/amt-18-2311-2025, 2025
Short summary
An analysis of cloud microphysical features over United Arab Emirates using multiple data sources
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
Atmos. Meas. Tech., 18, 1981–2003, https://doi.org/10.5194/amt-18-1981-2025,https://doi.org/10.5194/amt-18-1981-2025, 2025
Short summary
IceDetectNet: a rotated object detection algorithm for classifying components of aggregated ice crystals with a multi-label classification scheme
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024,https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Distribution characteristics of the summer precipitation raindrop spectrum on the Qinghai–Tibet Plateau
Fuzeng Wang, Yuanyu Duan, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
Atmos. Meas. Tech., 17, 6933–6944, https://doi.org/10.5194/amt-17-6933-2024,https://doi.org/10.5194/amt-17-6933-2024, 2024
Short summary
In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary

Cited articles

Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE T. Neural Networ., 5, 157–166, 1994. a
Chen, T., Kornblith, S., Norouzi, M., and Hinton, G.: A simple framework for contrastive learning of visual representations, in: International conference on machine learning, virtual, 13–18 July 2020, 1597–1607, PMLR, https://proceedings.mlr.press/v119/chen20j.html (last access: 25 June 2025), 2020. a, b
Chen, X. and He, K.: Exploring simple siamese representation learning, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, virtual, 19–25 June 2021, 15750–15758, https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Exploring_Simple_Siamese_Representation_Learning_CVPR_2021_paper.html (last access: 25 June 2025), 2021. a
Chu, Y., Zhang, H., Li, X., and Henneberger, J.: Data for publication “Exploring the effect of training set size and number of categories on ice crystal classification through a contrastive semi- supervised learning algorithm”, Zenodo [data set], https://doi.org/10.5281/zenodo.14696359, 2025a. a
Chu, Y., Zhang, H., Li, X., and Henneberger, J.: Models for publication “Exploring the effect of training set size and number of categories on ice crystal classification through a contrastive semi- supervised learning algorithm”, Zenodo [code], https://doi.org/10.5281/zenodo.14793334, 2025b. a
Download
Short summary
Our study improves ice crystal shape classification, key for understanding weather and climate. By adding unsupervised pre-training before supervised classification, our algorithm reduces manual labeling effort while maintaining high accuracy. It outperforms fully supervised models across datasets of varying sizes and categories, showing strong generalization ability. This method improves ice crystal classification techniques, making it adaptable to different environmental datasets.
Share