Articles | Volume 18, issue 1
https://doi.org/10.5194/amt-18-287-2025
https://doi.org/10.5194/amt-18-287-2025
Research article
 | 
16 Jan 2025
Research article |  | 16 Jan 2025

Exploring dual-lidar mean and turbulence measurements over Perdigão's complex terrain

Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista

Related authors

Squeezing Turbulence Statistics out of a Pulsed Lidar
Mohammadreza Manami, Jakob Mann, Mikael Sjöholm, Guillaume Léa, and Guillaume Gorju
EGUsphere, https://doi.org/10.5194/egusphere-2025-2226,https://doi.org/10.5194/egusphere-2025-2226, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Simulating low-frequency wind fluctuations
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024,https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Suppression of precipitation bias in wind velocities from continuous-wave Doppler lidars
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023,https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Revealing inflow and wake conditions of a 6 MW floating turbine
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023,https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Atmospheric stability from numerical weather prediction models and microwave radiometer observations for onshore and offshore wind energy applications
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech., 18, 2041–2067, https://doi.org/10.5194/amt-18-2041-2025,https://doi.org/10.5194/amt-18-2041-2025, 2025
Short summary
Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary
Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Research on atmospheric temperature fine measurements from the near surface to 60 km altitude based on an integrated lidar system
Zhangjun Wang, Tiantian Guo, Xianxin Li, Chao Chen, Dong Liu, Luoyuan Qu, Hui Li, and Xiufen Wang
Atmos. Meas. Tech., 18, 1405–1414, https://doi.org/10.5194/amt-18-1405-2025,https://doi.org/10.5194/amt-18-1405-2025, 2025
Short summary
Testing ground-based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025,https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary

Cited articles

Bell, T. M., Klein, P., Wildmann, N., and Menke, R.: Analysis of flow in complex terrain using multi-Doppler lidar retrievals, Atmospheric Measurement Techniques, 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020, 2020. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009a. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar performance in complex terrain modelled by WAsP Engineering, in: Proceedings EWEC, 16–19 pp., Marseille, France, https://backend.orbit.dtu.dk/ws/portalfiles/portal/3744984/2009_41.pdf (last access: 20 December 2024) , 2009b. a
Calhoun, R., Heap, R., Princevac, M., Newsom, R., Fernando, H., and Ligon, D.: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 Dispersion Experiment, J. Appl. Meteorol. Climato., 45, 1116–1126, 2006. a, b, c
Cherukuru, N. W., Calhoun, R., Lehner, M., Hoch, S. W., and Whiteman, C. D.: Instrument configuration for dual-Doppler lidar coplanar scans: METCRAX II, J. Appl. Remote Sens., 9, 096090, https://doi.org/10.1117/1.JRS.9.096090, 2015. a
Download
Short summary
Dual-lidar measurements are explored here as a cost-effective alternative for measuring the wind at great heights. From measurements at a mountainous site, we showed that this methodology can accurately capture mean wind speeds and turbulence under different flow conditions, and we recommended optimal lidar placement and sampling rates. This methodology allows the construction of vertical wind profiles up to 430 m, surpassing traditional meteorological mast heights and single-lidar capabilities.
Share