Articles | Volume 18, issue 1
https://doi.org/10.5194/amt-18-287-2025
https://doi.org/10.5194/amt-18-287-2025
Research article
 | 
16 Jan 2025
Research article |  | 16 Jan 2025

Exploring dual-lidar mean and turbulence measurements over Perdigão's complex terrain

Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista

Related authors

Editorial: Celebrating the first decade of Wind Energy Science
Carlo L. Bottasso, Sandrine Aubrun, Nicolaos A. Cutululis, Julia Gottschall, Athanasios Kolios, Jakob Mann, and Paul Veers
Wind Energ. Sci., 11, 347–348, https://doi.org/10.5194/wes-11-347-2026,https://doi.org/10.5194/wes-11-347-2026, 2026
Short summary
Impact of Boundary Layer Height and Large-Scale Turbulence on the Efficiency and Loads of Offshore Wind Farms
Stefan Ivanell, Bjarke T. Olsen, Antoine Mathieu, Cristina Mulet-Benzo, Abdul Haseeb Syed, Warit Chanprasert, Mikael Sjöholm, Jakob Mann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-286,https://doi.org/10.5194/wes-2025-286, 2026
Preprint under review for WES
Short summary
Dynamic response and loads analysis of a large offshore wind turbine under low-frequency wind fluctuations
Abdul Haseeb Syed, Ásta Hannesdóttir, and Jakob Mann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2026-4,https://doi.org/10.5194/wes-2026-4, 2026
Preprint under review for WES
Short summary
Comparison of measured and simulated fatigue loads on a multi-megawatt wind turbine
Ansh Patel, Jakob Mann, Mikael Sjöholm, Kasper Zinck, and Karunya Raj
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-278,https://doi.org/10.5194/wes-2025-278, 2025
Revised manuscript under review for WES
Short summary
Squeezing turbulence statistics out of a pulsed Doppler lidar
Mohammadreza Manami, Jakob Mann, Mikael Sjöholm, Guillaume Léa, and Guillaume Gorju
Atmos. Meas. Tech., 18, 7513–7523, https://doi.org/10.5194/amt-18-7513-2025,https://doi.org/10.5194/amt-18-7513-2025, 2025
Short summary

Cited articles

Bell, T. M., Klein, P., Wildmann, N., and Menke, R.: Analysis of flow in complex terrain using multi-Doppler lidar retrievals, Atmospheric Measurement Techniques, 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020, 2020. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009a. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar performance in complex terrain modelled by WAsP Engineering, in: Proceedings EWEC, 16–19 pp., Marseille, France, https://backend.orbit.dtu.dk/ws/portalfiles/portal/3744984/2009_41.pdf (last access: 20 December 2024) , 2009b. a
Calhoun, R., Heap, R., Princevac, M., Newsom, R., Fernando, H., and Ligon, D.: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 Dispersion Experiment, J. Appl. Meteorol. Climato., 45, 1116–1126, 2006. a, b, c
Cherukuru, N. W., Calhoun, R., Lehner, M., Hoch, S. W., and Whiteman, C. D.: Instrument configuration for dual-Doppler lidar coplanar scans: METCRAX II, J. Appl. Remote Sens., 9, 096090, https://doi.org/10.1117/1.JRS.9.096090, 2015. a
Download
Short summary
Dual-lidar measurements are explored here as a cost-effective alternative for measuring the wind at great heights. From measurements at a mountainous site, we showed that this methodology can accurately capture mean wind speeds and turbulence under different flow conditions, and we recommended optimal lidar placement and sampling rates. This methodology allows the construction of vertical wind profiles up to 430 m, surpassing traditional meteorological mast heights and single-lidar capabilities.
Share