Articles | Volume 18, issue 1
https://doi.org/10.5194/amt-18-287-2025
https://doi.org/10.5194/amt-18-287-2025
Research article
 | 
16 Jan 2025
Research article |  | 16 Jan 2025

Exploring dual-lidar mean and turbulence measurements over Perdigão's complex terrain

Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista

Related authors

The LOLland offshore Lidar EXperiment (LOLLEX): A novel observational approach for the study of wind farm flow and entrainment
Shokoufeh Malekmohammadi, Etienne Cheynet, Joachim Reuder, Claus Linnemann, Mikael Sjöholm, Jakob Mann, and Gregor Giebel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3148,https://doi.org/10.5194/egusphere-2025-3148, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Measurement of turbulence energy dissipation rate by a standalone high-resolution Doppler lidar
Abdul Haseeb Syed, Jakob Mann, and Mohammadreza Manami
EGUsphere, https://doi.org/10.5194/egusphere-2025-5214,https://doi.org/10.5194/egusphere-2025-5214, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Improving Wind Speed Availability of a Six-Beam Doppler Lidar
Mohammadreza Manami, Guillaume Léa, Jakob Mann, Mikael Sjöholm, and Guillaume Gorju
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-165,https://doi.org/10.5194/wes-2025-165, 2025
Preprint under review for WES
Short summary
Squeezing Turbulence Statistics out of a Pulsed Lidar
Mohammadreza Manami, Jakob Mann, Mikael Sjöholm, Guillaume Léa, and Guillaume Gorju
EGUsphere, https://doi.org/10.5194/egusphere-2025-2226,https://doi.org/10.5194/egusphere-2025-2226, 2025
Short summary
Simulating low-frequency wind fluctuations
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024,https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary

Cited articles

Bell, T. M., Klein, P., Wildmann, N., and Menke, R.: Analysis of flow in complex terrain using multi-Doppler lidar retrievals, Atmospheric Measurement Techniques, 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020, 2020. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009a. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar performance in complex terrain modelled by WAsP Engineering, in: Proceedings EWEC, 16–19 pp., Marseille, France, https://backend.orbit.dtu.dk/ws/portalfiles/portal/3744984/2009_41.pdf (last access: 20 December 2024) , 2009b. a
Calhoun, R., Heap, R., Princevac, M., Newsom, R., Fernando, H., and Ligon, D.: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 Dispersion Experiment, J. Appl. Meteorol. Climato., 45, 1116–1126, 2006. a, b, c
Cherukuru, N. W., Calhoun, R., Lehner, M., Hoch, S. W., and Whiteman, C. D.: Instrument configuration for dual-Doppler lidar coplanar scans: METCRAX II, J. Appl. Remote Sens., 9, 096090, https://doi.org/10.1117/1.JRS.9.096090, 2015. a
Download
Short summary
Dual-lidar measurements are explored here as a cost-effective alternative for measuring the wind at great heights. From measurements at a mountainous site, we showed that this methodology can accurately capture mean wind speeds and turbulence under different flow conditions, and we recommended optimal lidar placement and sampling rates. This methodology allows the construction of vertical wind profiles up to 430 m, surpassing traditional meteorological mast heights and single-lidar capabilities.
Share