Articles | Volume 18, issue 16
https://doi.org/10.5194/amt-18-4061-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-4061-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibration and performance evaluation of PM2.5 and NO2 air quality sensors for environmental epidemiology
Miriam Chacón-Mateos
CORRESPONDING AUTHOR
University of Stuttgart, Institute of Combustion and Power Plant Technology, Department of Flue Gas Cleaning and Air Quality Control, Stuttgart, 70569, Germany
now at: German Aerospace Center, Institute of Combustion Technology, Stuttgart, 70569, Germany
Héctor García-Salamero
University of Stuttgart, Institute of Combustion and Power Plant Technology, Department of Flue Gas Cleaning and Air Quality Control, Stuttgart, 70569, Germany
Bernd Laquai
University of Stuttgart, Institute of Combustion and Power Plant Technology, Department of Flue Gas Cleaning and Air Quality Control, Stuttgart, 70569, Germany
Ulrich Vogt
University of Stuttgart, Institute of Combustion and Power Plant Technology, Department of Flue Gas Cleaning and Air Quality Control, Stuttgart, 70569, Germany
Related authors
Miriam Chacón-Mateos, Bernd Laquai, Ulrich Vogt, and Cosima Stubenrauch
Atmos. Meas. Tech., 15, 7395–7410, https://doi.org/10.5194/amt-15-7395-2022, https://doi.org/10.5194/amt-15-7395-2022, 2022
Short summary
Short summary
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog droplets in the particulate matter (PM) concentrations of sensors. The results show a reduction in the overestimation of the PM but also an underestimation compared to reference devices. Special care is needed when designing a dryer as high temperatures change the sampled air by evaporating the most volatile particulate species. Low-cost dryers are very promising for different sensor applications.
Miriam Chacón-Mateos, Bernd Laquai, Ulrich Vogt, and Cosima Stubenrauch
Atmos. Meas. Tech., 15, 7395–7410, https://doi.org/10.5194/amt-15-7395-2022, https://doi.org/10.5194/amt-15-7395-2022, 2022
Short summary
Short summary
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog droplets in the particulate matter (PM) concentrations of sensors. The results show a reduction in the overestimation of the PM but also an underestimation compared to reference devices. Special care is needed when designing a dryer as high temperatures change the sampled air by evaporating the most volatile particulate species. Low-cost dryers are very promising for different sensor applications.
Ajit Ahlawat, Kay Weinhold, Jesus Marval, Paolo Tronville, Ari Leskinen, Mika Komppula, Holger Gerwig, Lars Gerling, Stephan Weber, Rikke Bramming Jørgensen, Thomas Nørregaard Jensen, Marouane Merizak, Ulrich Vogt, Carla Ribalta, Mar Viana, Andre Schmitz, Maria Chiesa, Giacomo Gerosa, Lothar Keck, Markus Pesch, Gerhard Steiner, Thomas Krinke, Torsten Tritscher, Wolfram Birmili, and Alfred Wiedensohler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-155, https://doi.org/10.5194/amt-2022-155, 2022
Revised manuscript not accepted
Short summary
Short summary
Measurements of ultrafine particles must be done with quality-assured instruments. The performance of portable instruments such as NanoScan SMPS, and GRIMM Mini WRAS spectrometer measuring the particle number size distribution in the range from 10 to 200 nm were investigated. The influence of different aerosol types and maintenance activities on these instruments were explored. The results show that these portable instruments are suitable for mobile UFP measurements for source identification.
Cited articles
Amegah, A. K.: Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa?, Environ. Pollut., 241, 1132–1137, https://doi.org/10.1016/j.envpol.2018.06.044, 2018.
Anastasiou, E., Vilcassim, M. J. R., Adragna, J., Gill, E., Tovar, A., Thorpe, L. E., and Gordon, T.: Feasibility of low-cost particle sensor types in long-term indoor air pollution health studies after repeated calibration, 2019–2021, Sci. Rep., 12, 14571, https://doi.org/10.1038/s41598-022-18200-0, 2022.
Apostolopoulos, I. D., Fouskas, G., and Pandis, S. N.: Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models, Atmosphere, 14, 368, https://doi.org/10.3390/atmos14020368, 2023.
Awad, M. and Khanna, R.: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, Apress; Imprint, Berkeley, CA, 300 pp., https://doi.org/10.1007/978-1-4302-5990-9, 2015.
Bagkis, E., Kassandros, T., Karteris, M., Karteris, A., and Karatzas, K.: Analyzing and Improving the Performance of a Particulate Matter Low Cost Air Quality Monitoring Device, Atmosphere, 12, 251, https://doi.org/10.3390/atmos12020251, 2021.
Beloconi, A. and Vounatsou, P.: Bayesian geostatistical modelling of high-resolution NO2 exposure in Europe combining data from monitors, satellites and chemical transport models, Environ. Int., 138, 105578, https://doi.org/10.1016/j.envint.2020.105578, 2020.
Bendl, J., Neukirchen, C., Mudan, A., Padoan, S., Zimmermann, R., and Adam, T.: Personal measurements and sampling of particulate matter in a subway – Identification of hot-spots, spatio-temporal variability and sources of pollutants, Atmos. Environ., 308, 119883, https://doi.org/10.1016/j.atmosenv.2023.119883, 2023.
Bi, J., Burnham, D., Zuidema, C., Schumacher, C., Gassett, A. J., Szpiro, A. A., Kaufman, J. D., and Sheppard, L.: Evaluating low-cost monitoring designs for PM2.5 exposure assessment with a spatiotemporal modeling approach, Environ. Pollut., 343, 123227, https://doi.org/10.1016/j.envpol.2023.123227, 2024.
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018.
Bishop, C. M.: Pattern recognition and machine learning, Information science and statistics, Springer, New York, NY, 738 pp., ISBN 978-0-387-31073-2 (Hardcover), ISBN 978-1-4939-3843-8 (Softcover), 2006.
Borrego, C., Costa, A. M., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, N., Konstantinidis, K., Vito, S. de, Esposito, E., Smith, P., André, N., Gérard, P., Francis, L. A., Castell, N., Schneider, P., Viana, M., Minguillón, M. C., Reimringer, W., Otjes, R. P., Sicard, O. von, Pohle, R., Elen, B., Suriano, D., Pfister, V., Prato, M., Dipinto, S., and Penza, M.: Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise, Atmos. Environ., 147, 246–263, https://doi.org/10.1016/j.atmosenv.2016.09.050, 2016.
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal margin classifiers, in: Proceedings of the fifth annual workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, USA, 27–29 July 1992, Association for Computing Machinery, 144–152, https://doi.org/10.1145/130385.130401, 1992.
Braithwaite, I., Zhang, S., Kirkbride, J. B., Osborn, D. P. J., and Hayes, J. F.: Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis, Environ. Health Persp., 127, 126002, https://doi.org/10.1289/EHP4595, 2019.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Cai, M., Yin, Y., and Xie, M.: Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach, Transport. Res. D-Tr. E., 14, 32–41, https://doi.org/10.1016/j.trd.2008.10.004, 2009.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
CEN/TS 17660-1: Air quality – Performance evaluation of air quality sensor systems – Part 1: Gaseous pollutants in ambient air, Beuth Verlag GmbH, Berlin, ISBN 978 0 539 06647 0, https://doi.org/10.31030/3260371, 2021.
CEN/TS 17660-2: Air quality – Performance evaluation of air quality sensor systems – Part 2: Particulate matter in ambient air, DIN Media GmbH, Berlin, https://doi.org/10.31030/3527320, 2024.
Chacón-Mateos, M., Laquai, B., Vogt, U., and Stubenrauch, C.: Evaluation of a low-cost dryer for a low-cost optical particle counter, Atmos. Meas. Tech., 15, 7395–7410, https://doi.org/10.5194/amt-15-7395-2022, 2022.
Chacón-Mateos, M., Remy, E., Liebers, U., Heimann, F., Witt, C., and Vogt, U.: Feasibility Study on the Use of NO2 and PM2.5 Sensors for Exposure Assessment and Indoor Source Apportionment at Fixed Locations, Sensors, 24, 5767, https://doi.org/10.3390/s24175767, 2024.
Chatzidiakou, L., Krause, A., Popoola, O. A. M., Di Antonio, A., Kellaway, M., Han, Y., Squires, F. A., Wang, T., Zhang, H., Wang, Q., Fan, Y., Chen, S., Hu, M., Quint, J. K., Barratt, B., Kelly, F. J., Zhu, T., and Jones, R. L.: Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments, Atmos. Meas. Tech., 12, 4643–4657, https://doi.org/10.5194/amt-12-4643-2019, 2019.
Chatzidiakou, L., Krause, A., Han, Y., Chen, W., Yan, L., Popoola, O. A. M., Kellaway, M., Wu, Y., Liu, J., Hu, M., Barratt, B., Kelly, F. J., Zhu, T., and Jones, R. L.: Using low-cost sensor technologies and advanced computational methods to improve dose estimations in health panel studies: results of the AIRLESS project, J. Expo. Sci. Env. Epid., 30, 981–989, https://doi.org/10.1038/s41370-020-0259-6, 2020.
Chatzidiakou, L., Krause, A., Kellaway, M., Han, Y., Li, Y., Martin, E., Kelly, F. J., Zhu, T., Barratt, B., and Jones, R. L.: Automated classification of time-activity-location patterns for improved estimation of personal exposure to air pollution, Environ. Health, 21, 125, https://doi.org/10.1186/s12940-022-00939-8, 2022.
Cordero, J. M., Borge, R., and Narros, A.: Using statistical methods to carry out in field calibrations of low cost air quality sensors, Sensor. Actuat. B-Chem., 267, 245–254, https://doi.org/10.1016/j.snb.2018.04.021, 2018.
D'Elia, G., Ferro, M., Sommella, P., Ferlito, S., Vito, S. de, and Di Francia, G.: Concept Drift Mitigation in Low-Cost Air Quality Monitoring Networks, Sensors, 24, 2786, https://doi.org/10.3390/s24092786, 2024.
deSouza, P., Kahn, R., Stockman, T., Obermann, W., Crawford, B., Wang, A., Crooks, J., Li, J., and Kinney, P.: Calibrating networks of low-cost air quality sensors, Atmos. Meas. Tech., 15, 6309–6328, https://doi.org/10.5194/amt-15-6309-2022, 2022.
deSouza, P., Barkjohn, K., Clements, A., Lee, J., Kahn, R., Crawford, B., and Kinney, P.: An analysis of degradation in low-cost particulate matter sensors, Environ. Sci. Atmos., 3, 521–536, https://doi.org/10.1039/d2ea00142j, 2023.
Di Antonio, A., Popoola, O. A. M., Ouyang, B., Saffell, J., and Jones, R. L.: Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter, Sensors, 18, 2790, https://doi.org/10.3390/s18092790, 2018.
Diez, S., Lacy, S., Coe, H., Urquiza, J., Priestman, M., Flynn, M., Marsden, N., Martin, N. A., Gillott, S., Bannan, T., and Edwards, P. M.: Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study, Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024, 2024.
DIN EN 16339: Ambient air - Method for the determination of the concentration of nitrogen dioxide by diffusive sampling, Beuth Verlag, https://doi.org/10.31030/3606364, 2025.
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, in: Official Journal of the European Union, 2008.
Directive 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe (recast), in: Official Journal of the European Union, 2024.
Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R. L., and Popoola, O.: Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems, Sensor. Actuat. B-Chem., 231, 701–713, https://doi.org/10.1016/j.snb.2016.03.038, 2016.
Ester, M., Kriegel, H. P., Sander, J., and Xiaowei, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings/Second International Conference on Knowledge Discovery & Data Mining, Portland, Oregon, 2–4 August 1996, AAAI Press, Menlo Park, Calif., 226–231, 1996.
Evangelopoulos, D., Chatzidiakou, L., Walton, H., Katsouyanni, K., Kelly, F. J., Quint, J. K., Jones, R. L., and Barratt, B.: Personal exposure to air pollution and respiratory health of COPD patients in London, Eur. Respir. J., 58, https://doi.org/10.1183/13993003.03432-2020, 2021.
Flores, E., Viallon, J., Moussay, P., Idrees, F., and Wielgosz, R. I.: Highly accurate nitrogen dioxide (NO2) in nitrogen standards based on permeation, Anal. Chem., 84, 10283–10290, https://doi.org/10.1021/ac3024153, 2012.
Flores, E., Viallon, J., Moussay, P., and Wielgosz, R. I.: Accurate Fourier transform infrared (FT-IR) spectroscopy measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) calibrated with synthetic spectra, Appl. Spectrosc., 67, 1171–1178, https://doi.org/10.1366/13-07030, 2013.
Gäbel, P., Koller, C., and Hertig, E.: Development of Air Quality Boxes Based on Low-Cost Sensor Technology for Ambient Air Quality Monitoring, Sensors, 22, 3830, https://doi.org/10.3390/s22103830, 2022.
Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, 2nd edn., O'Reilly, Sebastopol, CA, ISBN 9781492032649, 2019.
Goldman, G. T., Mulholland, J. A., Russell, A. G., Gass, K., Strickland, M. J., and Tolbert, P. E.: Characterization of Ambient Air Pollution Measurement Error in a Time-Series Health Study using a Geostatistical Simulation Approach, Atmos. Environ., 57, 101–108, https://doi.org/10.1016/j.atmosenv.2012.04.045, 2012.
Goulier, L., Paas, B., Ehrnsperger, L., and Klemm, O.: Modelling of Urban Air Pollutant Concentrations with Artificial Neural Networks Using Novel Input Variables, Int. J. Env. Res. Pub. He., 17, 2025, https://doi.org/10.3390/ijerph17062025, 2020.
Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a Measurement?, Environ. Sci. Technol., 52, 5530–5531, https://doi.org/10.1021/acs.est.8b01826, 2018.
Han, Y., Chen, W., Chatzidiakou, L., Krause, A., Yan, L., Zhang, H., Chan, Q., Barratt, B., Jones, R., Liu, J., Wu, Y., Zhao, M., Zhang, J., Kelly, F. J., Zhu, T., and the AIRLESS team: Effects of AIR pollution on cardiopuLmonary disEaSe in urban and peri-urban reSidents in Beijing: protocol for the AIRLESS study, Atmos. Chem. Phys., 20, 15775–15792, https://doi.org/10.5194/acp-20-15775-2020, 2020.
Han, Y., Chatzidiakou, L., Yan, L., Chen, W., Zhang, H., Krause, A., Xue, T., Chan, Q., Liu, J., Wu, Y., Barratt, B., Jones, R., Zhu, T., and Kelly, F. J.: Difference in ambient-personal exposure to PM2.5 and its inflammatory effect in local residents in urban and peri-urban Beijing, China: results of the AIRLESS project, Faraday Discuss., 226, 569–583, https://doi.org/10.1039/d0fd00097c, 2021.
Hang, Y., Meng, X., Li, T., Wang, T., Cao, J., Fu, Q., Dey, S., Li, S., Huang, K., Liang, F., Kan, H., Shi, X., and Liu, Y.: Assessment of long-term particulate nitrate air pollution and its health risk in China, iScience, 25, 104899, https://doi.org/10.1016/j.isci.2022.104899, 2022.
Harré, E. S., Price, P. D., Ayrey, R. B., Toop, L. J., Martin, I. R., and Town, G. I.: Respiratory effects of air pollution in chronic obstructive pulmonary disease: a three month prospective study, Thorax, 52, 1040–1044, https://doi.org/10.1136/thx.52.12.1040, 1997.
Hayward, I., Martin, N. A., Ferracci, V., Kazemimanesh, M., and Kumar, P.: Low-Cost Air Quality Sensors: Biases, Corrections and Challenges in Their Comparability, Atmosphere, 15, 1523, https://doi.org/10.3390/atmos15121523, 2024.
Hoffmann, C., Maglakelidze, M., von Schneidemesser, E., Witt, C., Hoffmann, P., and Butler, T.: Asthma and COPD exacerbation in relation to outdoor air pollution in the metropolitan area of Berlin, Germany, Resp. Res., 23, 64, https://doi.org/10.1186/s12931-022-01983-1, 2022.
Huang, C., Hu, J., Xue, T., Xu, H., and Wang, M.: High-Resolution Spatiotemporal Modeling for Ambient PM2.5 Exposure Assessment in China from 2013 to 2019, Environ. Sci. Technol., 55, 2152–2162, https://doi.org/10.1021/acs.est.0c05815, 2021.
Jerrett, M., Donaire-Gonzalez, D., Popoola, O., Jones, R., Cohen, R. C., Almanza, E., Nazelle, A. de, Mead, I., Carrasco-Turigas, G., Cole-Hunter, T., Triguero-Mas, M., Seto, E., and Nieuwenhuijsen, M.: Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science, Environ. Res., 158, 286–294, https://doi.org/10.1016/j.envres.2017.04.023, 2017.
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A., Helber, R., and Arnone, R. A.: Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 76, 64–82, https://doi.org/10.1016/j.jmarsys.2008.05.014, 2009.
Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., and Borowiak, A.: Review of the Performance of Low-Cost Sensors for Air Quality Monitoring, Atmosphere, 10, 506, https://doi.org/10.3390/atmos10090506, 2019.
Koehler, K., Good, N., Wilson, A., Mölter, A., Moore, B. F., Carpenter, T., Peel, J. L., and Volckens, J.: The Fort Collins commuter study: Variability in personal exposure to air pollutants by microenvironment, Indoor Air, 29, 231–241, https://doi.org/10.1111/ina.12533, 2019.
Koehler, K., Wilks, M., Green, T., Rule, A. M., Zamora, M. L., Buehler, C., Datta, A., Gentner, D. R., Putcha, N., Hansel, N. N., Kirk, G. D., Raju, S., and McCormack, M.: Evaluation of Calibration Approaches for Indoor Deployments of PurpleAir Monitors, Atmos. Environ., 310, 119944, https://doi.org/10.1016/j.atmosenv.2023.119944, 2023.
Krause, A.: Using novel portable air quality monitors to improve personal exposure and dose estimations for health studies, Apollo - University of Cambridge Repository, https://doi.org/10.17863/CAM.64122, 2021.
Laquai, B. and Saur, A.: Development of a Calibration Methodology for the SDS011 Low-Cost PM-Sensor with respect to Professional Reference Instrumentation, https://www.researchgate.net/publication/322628807_Development_of_a_Calibration_Methodology_for_the_SDS011_Low-Cost_PM-Sensor_with_respect_to_Professional_Reference_Instrumentation (last access: 2 December 2024), 2017.
Li, J., Hauryliuk, A., Malings, C., Eilenberg, S. R., Subramanian, R., and Presto, A. A.: Characterizing the Aging of Alphasense NO2 Sensors in Long-Term Field Deployments, ACS Sens., 6, 2952–2959, https://doi.org/10.1021/acssensors.1c00729, 2021.
Licina, D., Tian, Y., and Nazaroff, W. W.: Emission rates and the personal cloud effect associated with particle release from the perihuman environment, Indoor Air, 27, 791–802, https://doi.org/10.1111/ina.12365, 2017.
Liu, H.-Y., Schneider, P., Haugen, R., and Vogt, M.: Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway, Atmosphere, 10, 41, https://doi.org/10.3390/atmos10020041, 2019.
Mainka, A. and Żak, M.: Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO2 and PM2.5: A Review, Int. J. Env. Res. Pub. He., 19, 14079, https://doi.org/10.3390/ijerph192114079, 2022.
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., and R. Subramanian: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring, Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019, 2019.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.: Environmental and Health Impacts of Air Pollution: A Review, Front. Public Health, 8, 14, https://doi.org/10.3389/fpubh.2020.00014, 2020.
McCulloch, W. S. and Pitts, W.: A logical calculus of the ideas immanent in nervous activity, B. Math. Biophys., 5, 115–133, https://doi.org/10.1007/BF02478259, 1943.
Meng, X., Wang, C., Cao, D., Wong, C.-M., and Kan, H.: Short-term effect of ambient air pollution on COPD mortality in four Chinese cities, Atmos. Environ., 77, 149–154, https://doi.org/10.1016/j.atmosenv.2013.05.001, 2013.
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?, Environ. Int., 116, 286–299, https://doi.org/10.1016/j.envint.2018.04.018, 2018.
Müller, A. C. and Guido, S.: Introduction to machine learning with Python: A guide for data scientists, O'Reilly, Sebastopol, CA, ISBN 978-1-449-36941-5, 2017.
Novak, R., Petridis, I., Kocman, D., Robinson, J. A., Kanduè, T., Chapizanis, D., Karakitsios, S., Flückiger, B., Vienneau, D., Mikeš, O., Degrendele, C., Sáòka, O., García Dos Santos-Alves, S., Maggos, T., Pardali, D., Stamatelopoulou, A., Saraga, D., Persico, M. G., Visave, J., Gotti, A., and Sarigiannis, D.: Harmonization and Visualization of Data from a Transnational Multi-Sensor Personal Exposure Campaign, Int. J. Env. Res. Pub. He., 18, 11614, https://doi.org/10.3390/ijerph182111614, 2021.
Novak, R., Robinson, J. A., Kanduè, T., Sarigiannis, D., and Kocman, D.: Assessment of Individual-Level Exposure to Airborne Particulate Matter during Periods of Atmospheric Thermal Inversion, Sensors, 22, 7116, https://doi.org/10.3390/s22197116, 2022.
Novak, R., Robinson, J. A., Kanduè, T., Sarigiannis, D., Džeroski, S., and Kocman, D.: Empowering Participatory Research in Urban Health: Wearable Biometric and Environmental Sensors for Activity Recognition, Sensors, 23, 9890, https://doi.org/10.3390/s23249890, 2023a.
Novak, R., Robinson, J. A., Kanduè, T., Sarigiannis, D., and Kocman, D.: Simulating the impact of particulate matter exposure on health-related behaviour: A comparative study of stochastic modelling and personal monitoring data, Health Place, 83, 103111, https://doi.org/10.1016/j.healthplace.2023.103111, 2023b.
Novak, R., Robinson, J. A., Kanduè, T., Sarigiannis, D., and Kocman, D.: Personal airborne particulate matter exposure and intake dose, indoor air quality, biometric, and activity dataset from the city of Ljubljana, Slovenia, Data Brief, 52, 109877, https://doi.org/10.1016/j.dib.2023.109877, 2024.
Paas, B., Stienen, J., Vorländer, M., and Schneider, C.: Modelling of Urban Near-Road Atmospheric PM Concentrations Using an Artificial Neural Network Approach with Acoustic Data Input, Environments, 4, 26, https://doi.org/10.3390/environments4020026, 2017.
Pantelic, J., Liu, S., Pistore, L., Licina, D., Vannucci, M., Sadrizadeh, S., Ghahramani, A., Gilligan, B., Sternberg, E., Kampschroer, K., and Schiavon, S.: Personal CO2 cloud: laboratory measurements of metabolic CO2 inhalation zone concentration and dispersion in a typical office desk setting, J. Expo. Sci. Env. Epid., 30, 328–337, https://doi.org/10.1038/s41370-019-0179-5, 2020.
Patton, A., Datta, A., Zamora, M. L., Buehler, C., Xiong, F., Gentner, D. R., and Koehler, K.: Non-linear probabilistic calibration of low-cost environmental air pollution sensor networks for neighborhood level spatiotemporal exposure assessment, J. Expo. Sci. Env. Epid., 32, 908–916, https://doi.org/10.1038/s41370-022-00493-y, 2022.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Piechocki-Minguy, A., Plaisance, H., Schadkowski, C., Sagnier, I., Saison, J. Y., Galloo, J. C., and Guillermo, R.: A case study of personal exposure to nitrogen dioxide using a new high sensitive diffusive sampler, Sci. Total Environ., 366, 55–64, https://doi.org/10.1016/j.scitotenv.2005.08.009, 2006.
Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y., Li, K., Dick, R. P., Lv, Q., Hannigan, M., and Shang, L.: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring, Atmos. Meas. Tech., 7, 3325–3336, https://doi.org/10.5194/amt-7-3325-2014, 2014.
Rathbone, C. J., Bousiotis, D., Rose, O. G., and Pope, F. D.: Using low-cost sensors to assess common air pollution sources across multiple residences, Sci. Rep., 15, 1803, https://doi.org/10.1038/s41598-025-85985-1, 2025.
Rea, A. W., Zufall, M. J., Williams, R. W., Sheldon, L., and Howard-Reed, C.: The influence of human activity patterns on personal PM exposure: a comparative analysis of filter-based and continuous particle measurements, J. Air Waste Manage., 51, 1271–1279, https://doi.org/10.1080/10473289.2001.10464351, 2001.
Rose, O. G., Bousiotis, D., Rathbone, C., and Pope, F. D.: Investigating Indoor Air Pollution Sources and Student's Exposure Within School Classrooms: Using a Low-Cost Sensor and Source Apportionment Approach, Indoor Air, 2024, 5544298, https://doi.org/10.1155/2024/5544298, 2024.
Russell, H. S., Frederickson, L. B., Kwiatkowski, S., Emygdio, A. P. M., Kumar, P., Schmidt, J. A., Hertel, O., and Johnson, M. S.: Enhanced Ambient Sensing Environment-A New Method for Calibrating Low-Cost Gas Sensors, Sensors, 22, 7238, https://doi.org/10.3390/s22197238, 2022.
Sahu, R., Nagal, A., Dixit, K. K., Unnibhavi, H., Mantravadi, S., Nair, S., Simmhan, Y., Mishra, B., Zele, R., Sutaria, R., Motghare, V. M., Kar, P., and Tripathi, S. N.: Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments, Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, 2021.
Samad, A., Obando Nuñez, D. R., Solis Castillo, G. C., Laquai, B., and Vogt, U.: Effect of Relative Humidity and Air Temperature on the Results Obtained from Low-Cost Gas Sensors for Ambient Air Quality Measurements, Sensors, 20, 5175, https://doi.org/10.3390/s20185175, 2020.
Samon, S. M., Hammel, S. C., Stapleton, H. M., and Anderson, K. A.: Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions, Environ. Int., 169, 107339, https://doi.org/10.1016/j.envint.2022.107339, 2022.
Sarnat, J. A., Schwartz, J., Catalano, P. J., and Suh, H. H.: Gaseous pollutants in particulate matter epidemiology: confounders or surrogates?, Environ. Health Persp., 109, 1053–1061, https://doi.org/10.1289/ehp.011091053, 2001.
Schmitz, S., Caseiro, A., and von Schneidemesser, E.: How electrochemical sensors measure up to reference-grade nitrogen dioxide monitors across temporal scales, Sci. Total Environ., 980, 179476, https://doi.org/10.1016/j.scitotenv.2025.179476, 2025.
Scott Downen, R., Dong, Q., Chorvinsky, E., Li, B., Tran, N., Jackson, J. H., Pillai, D. K., Zaghloul, M., and Li, Z.: Personal NO2 sensor demonstrates feasibility of in-home exposure measurements for pediatric asthma research and management, J. Expo. Sci. Env. Epid., 32, 312–319, https://doi.org/10.1038/s41370-022-00413-0, 2022.
Shaw, P. A., Deffner, V., Keogh, R. H., Tooze, J. A., Dodd, K. W., Küchenhoff, H., Kipnis, V., and Freedman, L. S.: Epidemiologic analyses with error-prone exposures: review of current practice and recommendations, Ann. Epidemiol., 28, 821–828, https://doi.org/10.1016/j.annepidem.2018.09.001, 2018.
Shirdel, M., Bergdahl, I. A., Andersson, B. M., Wingfors, H., Sommar, J. N., and Liljelind, I. E.: Passive personal air sampling of dust in a working environment-A pilot study, J. Occup. Environ. Hyg., 16, 675–684, https://doi.org/10.1080/15459624.2019.1648814, 2019.
Soja, S.-M., Wegener, R., Kille, N., and Castell, S.: Merging citizen science with epidemiology: design of a prospective feasibility study of health events and air pollution in Cologne, Germany, Pilot and Feasibility Studies, 9, 28, https://doi.org/10.1186/s40814-023-01250-0, 2023.
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sensor. Actuat. B-Chem., 215, 249–257, https://doi.org/10.1016/j.snb.2015.03.031, 2015.
Steinle, S., Reis, S., and Sabel, C. E.: Quantifying human exposure to air pollution–moving from static monitoring to spatio-temporally resolved personal exposure assessment, Sci. Total Environ., 443, 184–193, https://doi.org/10.1016/j.scitotenv.2012.10.098, 2013.
Suriano, D. and Penza, M.: Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through Different Calibration Models, Atmosphere, 13, 567, https://doi.org/10.3390/atmos13040567, 2022.
Tancev, G.: Relevance of Drift Components and Unit-to-Unit Variability in the Predictive Maintenance of Low-Cost Electrochemical Sensor Systems in Air Quality Monitoring, Sensors, 21, 32908, https://doi.org/10.3390/s21093298, 2021.
Thunis, P., Georgieva, E., and Pederzoli, A.: A tool to evaluate air quality model performances in regulatory applications, Environ. Modell. Softw., 38, 220–230, https://doi.org/10.1016/j.envsoft.2012.06.005, 2012.
Topaloviæ, D. B., Davidoviæ, M. D., Jovanoviæ, M., Bartonova, A., Ristovski, Z., and Jovaševiæ-Stojanoviæ, M.: In search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: Comparison of linear, multilinear and artificial neural network approaches, Atmos. Environ., 213, 640–658, https://doi.org/10.1016/j.atmosenv.2019.06.028, 2019.
Tryner, J., Phillips, M., Quinn, C., Neymark, G., Wilson, A., Jathar, S. H., Carter, E., and Volckens, J.: Design and Testing of a Low-Cost Sensor and Sampling Platform for Indoor Air Quality, Build. Environ., 206, 108398, https://doi.org/10.1016/j.buildenv.2021.108398, 2021.
VDI 2453 Part 1: Gaseous air pollution measurement; determination of nitrogen dioxide concentration; photometric manual standard method (Saltzmann), Beuth GmbH, Berlin, 1990.
Venkatraman Jagatha, J., Klausnitzer, A., Chacón-Mateos, M., Laquai, B., Nieuwkoop, E., van der Mark, P., Vogt, U., and Schneider, C.: Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research, Sensors, 21, 3960, https://doi.org/10.3390/s21123960, 2021.
Wei, P., Sun, L., Anand, A., Zhang, Q., Huixin, Z., Deng, Z., Wang, Y., and Ning, Z.: Development and evaluation of a robust temperature sensitive algorithm for long term NO2 gas sensor network data correction, Atmos. Environ., 230, 117509, https://doi.org/10.1016/j.atmosenv.2020.117509, 2020.
WHO: WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, Geneva, World Health Organization, ISBN 978-92-4-003422-8, 2021.
Yun, S. and Licina, D.: Optimal sensor placement for personal inhalation exposure detection in static and dynamic office environments, Build. Environ., 241, 110459, https://doi.org/10.1016/j.buildenv.2023.110459, 2023.
Zamora, M. L., Buehler, C., Lei, H., Datta, A., Xiong, F., Gentner, D. R., and Koehler, K.: Evaluating the Performance of Using Low-Cost Sensors to Calibrate for Cross-Sensitivities in a Multipollutant Network, ACS EST Eng., 2, 780–793, https://doi.org/10.1021/acsestengg.1c00367, 2022.
Zauli-Sajani, S., Marchesi, S., Pironi, C., Barbieri, C., Poluzzi, V., and Colacci, A.: Assessment of air quality sensor system performance after relocation, Atmos. Pollut. Res., 12, 282–291, https://doi.org/10.1016/j.apr.2020.11.010, 2021.
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, 2018.
Zuidema, C., Schumacher, C. S., Austin, E., Carvlin, G., Larson, T. V., Spalt, E. W., Zusman, M., Gassett, A. J., Seto, E., Kaufman, J. D., and Sheppard, L.: Deployment, Calibration, and Cross-Validation of Low-Cost Electrochemical Sensors for Carbon Monoxide, Nitrogen Oxides, and Ozone for an Epidemiological Study, Sensors, 21, 4214, https://doi.org/10.3390/s21124214, 2021.
Zuidema, C., Bi, J., Burnham, D., Carmona, N., Gassett, A. J., Slager, D. L., Schumacher, C., Austin, E., Seto, E., Szpiro, A. A., and Sheppard, L.: Leveraging low-cost sensors to predict nitrogen dioxide for epidemiologic exposure assessment, J. Expo. Sci. Env. Epid., 35, 169–179, https://doi.org/10.1038/s41370-024-00667-w, 2024.
Executive editor
Low-cost sensors have been increasing used to measure air pollutants in environmental epidemiology. This work investigated the calibration and performance evaluation of PM2.5 and NO2 sensors, and introduced novel methodologies for field sensor validation during deployment. The manuscript is thorough and systematic in data treatment, and could be used a best practice guide for the application of sensors to air pollution and epidemiological studies.
Low-cost sensors have been increasing used to measure air pollutants in environmental...
Short summary
This study evaluates PM2.5 and NO2 sensors for their use in health studies. Sensors were calibrated using data from reference instruments, and regression and machine learning models were evaluated, identifying opportunities and limitations in model transferability in both indoor and outdoor environments and showcasing the importance of integrating metadata such as activity logs and diffusive tubes to improve data validation and interpretation during deployment in the houses of the participants.
This study evaluates PM2.5 and NO2 sensors for their use in health studies. Sensors were...