Hayman, M. and Spuler, S. M.: Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols, Opt. Express, 25, A1096–A1110,
https://doi.org/10.1364/OE.25.0A1096, 2017.
a,
b
Hayman, M., Stillwell, R. A., and Spuler, S. M.: Fast computation of absorption spectra for lidar data processing using principal component analysis, Opt. Lett., 44, 1900–1903,
https://doi.org/10.1364/OL.44.001900, 2019.
a
Hayman, M., Stillwell, R. A., and Spuler, S. M.: Optimization of linear signal processing in photon counting lidar using Poisson thinning, Opt. Lett., 45, 5213–5216,
https://doi.org/10.1364/OL.396498, 2020.
a
Hayman, M., Stillwell, R. A., Karboski, A., Marais, W. J., and Spuler, S. M.: Global estimation of range resolved thermodynamic profiles from micropulse differential absorption lidar, Opt. Express, 32, 14442–14460,
https://doi.org/10.1364/OE.521178, 2024.
a,
b
Kaur, H., Koundal, D., and Kadyan, V.: Image Fusion Techniques: A Survey, Arch. Comput. Method. E., 28, 4425–4447,
https://doi.org/10.1007/s11831-021-09540-7, 2021.
a
Li, S., Kang, X., Fang, L., Hu, J., and Yin, H.: Pixel-level image fusion: A survey of the state of the art, Inform. Fusion, 33, 100–112,
https://doi.org/10.1016/j.inffus.2016.05.004, 2017.
a
Löhnert, U., Turner, D. D., and Crewell, S.: Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions, J. Appl. Meteorol. Clim., 48, 1017–1032,
https://doi.org/10.1175/2008JAMC2060.1, 2009.
a
Lowe, P. R.: An Approximating Polynomial for Computation of Saturation Vapor Pressure, J. Appl. Meteorol., 16, 100–103, 1977. a
Marais, W. J. and Hayman, M.: Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion, Atmos. Meas. Tech., 15, 5159–5180,
https://doi.org/10.5194/amt-15-5159-2022, 2022.
a,
b
McCullough, E. M., Drummond, J. R., and Duck, T. J.: Lidar measurements of thin laminations within Arctic clouds, Atmos. Chem. Phys., 19, 4595–4614,
https://doi.org/10.5194/acp-19-4595-2019, 2019.
a
Mudukutore, A. S., Chandrasekar, V., and Keeler, R. J.: Pulse compression for weather radars, IEEE T. Geosci. Remote, 36, 125–142,
https://doi.org/10.1109/36.655323, 1998.
a
Nehrir, A., Repasky, K., and Carlsten, J.: Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere, J. Atmos. Ocean. Tech., 28, 131–147,
https://doi.org/10.1175/2010JTECHA1452.1, 2011.
a,
b
Newsom, R. K., Turner, D. D., Mielke, B., Clayton, M., Ferrare, R., and Sivaraman, C.: Simultaneous analog and photon counting detection for Raman lidar, Appl. Optics, 48, 3903–3914,
https://doi.org/10.1364/AO.48.003903, 2009.
a
Newsom, R. K., Turner, D. D., Lehtinen, R., Münkel, C., Kallio, J., and Roininen, R.: Evaluation of a Compact Broadband Differential Absorption Lidar for Routine Water Vapor Profiling in the Atmospheric Boundary Layer, J. Atmos Ocean. Tech., 37, 47–65,
https://doi.org/10.1175/JTECH-D-18-0102.1, 2020.
a,
b,
c
O'Hora, F. and Bech, J.: Improving weather radar observations using pulse-compression techniques, Meteorol. Appl., 14, 389–401,
https://doi.org/10.1002/met.38, 2007.
a
Rani, K. and Sharma, R.: Study of Differnt Image Fusion Algorithm, International Journal of Emerging Technology and Advanced Engineering, 3, 288–291, 2013. a
Reichardt, J., Wandinger, U., Klein, V., Mattis, I., Hilber, B., and Begbie, R.: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements, Appl. Optics, 51, 8111–8131,
https://doi.org/10.1364/AO.51.008111, 2012.
a
Repasky, K. S., Moen, D., Spuler, S., Nehrir, A. R., and Carlsten, J. L.: Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere, Remote Sens., 5, 6241–6259,
https://doi.org/10.3390/rs5126241, 2013.
a
Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M., and Nehrir, A. R.: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor, Atmos. Meas. Tech., 8, 1073–1087,
https://doi.org/10.5194/amt-8-1073-2015, 2015.
a,
b,
c,
d
Spuler, S. M., Hayman, M., Stillwell, R. A., Carnes, J., Bernatsky, T., and Repasky, K. S.: MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling, Atmos. Meas. Tech., 14, 4593–4616,
https://doi.org/10.5194/amt-14-4593-2021, 2021.
a,
b,
c,
d,
e,
f,
g,
h
Spuler, S. M., Stillwell, R. A., Hayman, M., and Repasky, K. S.: Semiconductor Lidar for Quantitative Atmospheric Profiling, in: Proceedings of the 30th International Laser Radar Conference, edited by: Sullivan, J. T., Leblanc, T., Tucker, S., Demoz, B., Eloranta, E., Hostetler, C., Ishii, S., Mona, L., Moshary, F., Papayannis, A., and Rupavatharam, K., 41–47, Springer Atmospheric Sciences,
https://doi.org/10.1007/978-3-031-37818-8_6, 2023.
a
Stillwell, R. A., Spuler, S. M., Hayman, M., Repasky, K. S., and Bunn, C. E.: Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature, Opt. Express, 28, 71–93,
https://doi.org/10.1364/OE.379804, 2020.
a,
b,
c
Strotkamp, M., Munk, A., Jungbluth, B., Hoffmann, H.-D., and Höffner, J.: Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar, CEAS Space Journal, 11, 413–422,
https://doi.org/10.1007/s12567-019-00253-z, 2019.
a
Thayer, J. P., Nielson, N. B., Warren, R. E., and Heinselman, C. J.: Rayleigh lidar system for middle atmosphere research in the arctic, Opt. Eng., 36, 2045–2061, 1997. a
Trivedi, G. and Sanghvi, R.: Optimizing Image Fusion Using Modified Principle Component Analysis Algorithm and Adaptive Weighting Scheme, International Journal of Advanced Networking and Applications, 15, 5769–5774, 2023. a
Vivekanandan, J., Ellis, S., Tsai, P., Loew, E., Lee, W.-C., Emmett, J., Dixon, M., Burghart, C., and Rauenbuehler, S.: A wing pod-based millimeter wavelength airborne cloud radar, Geosci. Instrum. Method. Data Syst., 4, 161–176,
https://doi.org/10.5194/gi-4-161-2015, 2015.
a
von Zahn, U., von Cossart, G., Fiedler, J., Fricke, K. H., Nelke, G., Baumgarten, G., Rees, D., Hauchecorne, A., and Adolfsen, K.: The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance, Ann. Geophys., 18, 815–833,
https://doi.org/10.1007/s00585-000-0815-2, 2000.
a
Weckwerth, T. M., Weber, K. J., Turner, D. D., and Spuler, S. M.: Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL), J. Atmos. Ocean. Techn., 33, 2353–2372,
https://doi.org/10.1175/JTECH-D-16-0119.1, 2016.
a
Wulfmeyer, V.: Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter, Appl. Optics, 37, 3804–3824,
https://doi.org/10.1364/AO.37.003804, 1998.
a