Articles | Volume 18, issue 20
https://doi.org/10.5194/amt-18-5527-2025
https://doi.org/10.5194/amt-18-5527-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Towards sensible heat flux measurements with fast-response fine-wire platinum resistance thermometers on small multicopter uncrewed aerial systems

Norman Wildmann and Laszlo Györy

Related authors

Data assimilation of generic boundary layer flows for wind turbine applications – an LES study
Linus Wrba, Antonia Englberger, Andreas Dörnbrack, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci., 10, 2217–2236, https://doi.org/10.5194/wes-10-2217-2025,https://doi.org/10.5194/wes-10-2217-2025, 2025
Short summary
How do convective cold pools influence the atmospheric boundary layer near two wind turbines in northern Germany?
Jeffrey D. Thayer, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci., 10, 2237–2255, https://doi.org/10.5194/wes-10-2237-2025,https://doi.org/10.5194/wes-10-2237-2025, 2025
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023,https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems
Tamino Wetz and Norman Wildmann
Wind Energ. Sci., 8, 515–534, https://doi.org/10.5194/wes-8-515-2023,https://doi.org/10.5194/wes-8-515-2023, 2023
Short summary

Cited articles

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bulletin of the American Meteorological Society, 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. a, b
Billesbach, D. P., Arkebauer, T. J., and Sullivan, R. C.: Intercomparison of sensible and latent heat flux measurements from combined eddy covariance, energy balance, and Bowen ratio methods above a grassland prairie, Scientific Reports, 14, 21866, https://doi.org/10.1038/s41598-024-67911-z, 2024. a
Boventer, J., Bramati, M., Savvakis, V., Beyrich, F., Kayser, M., Platis, A., and Bange, J.: Validation of Doppler Wind Lidar Measurements with an Uncrewed Aircraft System (UAS) in the Daytime Atmospheric Boundary Layer, Journal of Atmospheric and Oceanic Technology, 41, 705–723, https://doi.org/10.1175/JTECH-D-23-0127.1, 2024. a
Callendar, H. L.: On the Practical Measurement of Temperature: Experiments Made at the Cavendish Laboratory, Cambridge, Philosophical Transactions of the Royal Society of London A, 178, 161–230, https://doi.org/10.1098/rsta.1887.0006, 1887. a
Cassano, J. J.: Observations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle, Antarctic Science, 26, 205–213, https://doi.org/10.1017/S0954102013000539, 2014. a, b
Download
Short summary
Fast temperature sensors are deployed on drones to accurately measure temperature changes and fluctuations in the atmosphere. Compared to standard sensors, these new sensors showed better accuracy, especially in rapidly changing temperatures. Over 100 drone flights confirmed the sensors' ability to measure temperature fast enough to compare to standard meteorological instruments. This new method provides valuable data for understanding turbulent heat fluxes in the atmospheric boundary layer.
Share