Articles | Volume 18, issue 20
https://doi.org/10.5194/amt-18-5763-2025
https://doi.org/10.5194/amt-18-5763-2025
Research article
 | 
24 Oct 2025
Research article |  | 24 Oct 2025

Machine learning-based downscaling of aerosol size distributions from a global climate model

Antti Vartiainen, Santtu Mikkonen, Ville Leinonen, Tuukka Petäjä, Alfred Wiedensohler, Thomas Kühn, and Tuuli Miinalainen

Data sets

Machine Learning-Based Downscaling of Aerosol Size Distributions from a Global Climate Model Antti Vartiainen https://doi.org/10.5281/zenodo.17079843

Download
Short summary
Global climate models, commonly used for climate predictions, struggle at capturing local-scale variations in air quality. We have used measurements of ultrafine particles (UFPs), a less understood air pollutant with potentially significant health implications, for training machine learning models that can substantially reduce the inaccuracy in UFP concentrations predicted by a climate model. This approach could aid epidemiological studies of ultrafine particles by extending exposure records.
Share