Articles | Volume 18, issue 21
https://doi.org/10.5194/amt-18-5939-2025
https://doi.org/10.5194/amt-18-5939-2025
Research article
 | 
30 Oct 2025
Research article |  | 30 Oct 2025

The Component Summation Technique for Measuring Upwelling Longwave Irradiance in the Presence of an Obstruction

Bryan E. Fabbri, Gregory L. Schuster, Frederick M. Denn, Bing Lin, David A. Rutan, Wenying Su, Zachary A. Eitzen, James J. Madigan Jr., Robert F. Arduini, and Norman G. Loeb

Related authors

Comment on “Design study for an airborne N2O lidar” by Kiemle et al. (2024)
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
Atmos. Meas. Tech., 18, 4003–4004, https://doi.org/10.5194/amt-18-4003-2025,https://doi.org/10.5194/amt-18-4003-2025, 2025
Short summary
Mapping 532 nm Lidar Ratios for CALIPSO-Classified Marine Aerosols using MODIS AOD Constrained Retrievals and GOCART Model Simulations
Travis Toth, Gregory Schuster, Marian Clayton, Zhujun Li, David Painemal, Sharon Rodier, Jayanta Kar, Tyler Thorsen, Richard Ferrare, Mark Vaughan, Jason Tackett, Huisheng Bian, Mian Chin, Anne Garnier, Ellsworth Welton, Robert Ryan, Charles Trepte, and David Winker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2832,https://doi.org/10.5194/egusphere-2025-2832, 2025
Short summary
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024,https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024,https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm
Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang
Atmos. Meas. Tech., 17, 2977–2990, https://doi.org/10.5194/amt-17-2977-2024,https://doi.org/10.5194/amt-17-2977-2024, 2024
Short summary

Cited articles

Abramowitz, G., Pouyanné, L., and Ajami, H.: On the information content of surface meteorology for downward atmospheric long-wave radiation synthesis, Geophysical Research Letters, 39, https://doi.org/10.1029/2011GL050726, 2012. a
Belward, A. and Loveland, T.: The DIS 1km Land Cover Data Set, Global Change, The IGBP Newsletter No. 27, 7–9, http://www.igbp.net/download/18.950c2fa1495db7081e127/1416232583706/NL_271996.pdf (last access: 16 October 2025), September 1996. a
Bohren, C. and Clothiaux, E.: Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN 3-527-40503-8, 2006. a
Chen, B., Kasher, J., Maloney, J., Girgia, A., and Clark, D.: Determination of the clear sky emissivity for use in cool storage roof and roof pond applications, ASES Proceedings, Denver, CO, https://www.researchgate.net/publication/237705238_Determination_of_the_clear_sky_emissivity_for_use_in_cool_storage_roof_and_roof_pond_applications (last access: 16 October 2025), 1991. a
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. a, b
Download
Short summary
We present a new upwelling longwave (LW) measurement technique that eliminates obstruction influences on pyrgeometers by using an infrared thermometer, downwelling LW pyrgeometer, and air temperature probe. This approach can be implemented at locations with obstruction challenges and verify existing upwelling LW pyrgeometer measurements. Satellite projects like the Clouds and the Earth's Radiant Energy System depend on accurate surface measurements to validate their models.
Share