Articles | Volume 18, issue 21 
            
                
                    
            
            
            https://doi.org/10.5194/amt-18-5939-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-5939-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
The Component Summation Technique for Measuring Upwelling Longwave Irradiance in the Presence of an Obstruction
                                            Analytical Mechanics Associates, Hampton, Virginia, USA
                                        
                                    Gregory L. Schuster
CORRESPONDING AUTHOR
                                            
                                    
                                            NASA Langley Research Center, Hampton, Virginia, USA
                                        
                                    
                                            retired
                                        
                                    Frederick M. Denn
                                            Analytical Mechanics Associates, Hampton, Virginia, USA
                                        
                                    Bing Lin
                                            NASA Langley Research Center, Hampton, Virginia, USA
                                        
                                    David A. Rutan
                                            Adnet Systems Inc., Hampton, Virginia, USA
                                        
                                    Wenying Su
                                            NASA Langley Research Center, Hampton, Virginia, USA
                                        
                                    Zachary A. Eitzen
                                            Adnet Systems Inc., Hampton, Virginia, USA
                                        
                                    James J. Madigan Jr.
                                            Analytical Mechanics Associates, Hampton, Virginia, USA
                                        
                                    Robert F. Arduini
                                            Science Systems and Applications, Inc., Hampton, Virginia, USA
                                        
                                    
                                            retired
                                        
                                    Norman G. Loeb
                                            NASA Langley Research Center, Hampton, Virginia, USA
                                        
                                    Related authors
No articles found.
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
                                    Atmos. Meas. Tech., 18, 4003–4004, https://doi.org/10.5194/amt-18-4003-2025, https://doi.org/10.5194/amt-18-4003-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                This is a reply to a recent article by Christoph Kiemle et al., critical of CO2 measurements using continuous-wave (CW) lidar. We show CW lidar is not only capable of measuring range but also capable of measuring range to the required accuracy without the aid of an external altimeter.
                                            
                                            
                                        Travis Toth, Gregory Schuster, Marian Clayton, Zhujun Li, David Painemal, Sharon Rodier, Jayanta Kar, Tyler Thorsen, Richard Ferrare, Mark Vaughan, Jason Tackett, Huisheng Bian, Mian Chin, Anne Garnier, Ellsworth Welton, Robert Ryan, Charles Trepte, and David Winker
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-2832, https://doi.org/10.5194/egusphere-2025-2832, 2025
                                    Short summary
                                    Short summary
                                            
                                                NASA’s CALIPSO satellite mission observed aerosols (airborne particles) globally from 2006 to 2023. Its final data products update improves its aerosol optical parameters over oceans by adjusting for regional and seasonal differences in a new measurement-model synergistic approach. This results in a more realistic aerosol characterization, specifically near coastlines (where sea salt mixes with pollution), with potential impacts to future studies of science applications (e.g., climate effects).
                                            
                                            
                                        Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
                                    Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
                                            
                                            
                                        Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
                                    Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
                                            
                                            
                                        Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang
                                    Atmos. Meas. Tech., 17, 2977–2990, https://doi.org/10.5194/amt-17-2977-2024, https://doi.org/10.5194/amt-17-2977-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We introduce a concept utilizing a differential absorption barometric lidar operating within the 1.96 µm CO2 absorption band. Our focus is on a compact lidar configuration, featuring reduced telescope size and lower laser pulse energies towards minimizing costs for potential forthcoming Mars missions. The core measurement objectives encompass the determination of column CO2 absorption optical depth and abundance, surface air pressure, and vertical distributions of dust and cloud layers.
                                            
                                            
                                        Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
                                    Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
                                            
                                            
                                        Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
                                    Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
                                            
                                            
                                        Bastiaan van Diedenhoven, Otto P. Hasekamp, Brian Cairns, Gregory L. Schuster, Snorre Stamnes, Michael Shook, and Luke Ziemba
                                    Atmos. Meas. Tech., 15, 7411–7434, https://doi.org/10.5194/amt-15-7411-2022, https://doi.org/10.5194/amt-15-7411-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The strong variability in the chemistry of atmospheric particulate matter affects the amount of water aerosols absorb and their effect on climate. We present a remote sensing method to determine the amount of water in particulate matter. Its application to airborne instruments indicates that the observed aerosols have rather low water contents and low fractions of soluble particles. Future satellites will be able to yield global aerosol water uptake data.
                                            
                                            
                                        Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
                                    Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
                                            
                                            
                                        David W. Fillmore, David A. Rutan, Seiji Kato, Fred G. Rose, and Thomas E. Caldwell
                                    Atmos. Chem. Phys., 22, 10115–10137, https://doi.org/10.5194/acp-22-10115-2022, https://doi.org/10.5194/acp-22-10115-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                This paper presents an evaluation of the aerosol analysis incorporated into the Clouds and the Earth's Radiant Energy System (CERES) data products as well as the aerosols' impact on solar radiation reaching the surface. CERES is a NASA Earth observation mission with instruments flying on various polar-orbiting satellites. Its primary objective is the study of the radiative energy balance of the climate system as well as examination of the influence of clouds and aerosols on this balance.
                                            
                                            
                                        Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
                                    Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
                                            
                                            
                                        Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
                                    Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
                                            
                                            
                                        Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
                                    Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
                                            
                                            
                                        Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
                                    Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
                                            
                                            
                                        David F. Baker, Emily Bell, Kenneth J. Davis, Joel F. Campbell, Bing Lin, and Jeremy Dobler
                                    Geosci. Model Dev., 15, 649–668, https://doi.org/10.5194/gmd-15-649-2022, https://doi.org/10.5194/gmd-15-649-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The OCO-2 satellite measures many closely spaced column-averaged CO2  values around its orbit. To give these data proper weight in flux inversions, their error correlations must be accounted for. Here we lay out a 1-D error model with correlations that die out exponentially along-track to do so. A correlation length scale of ∼20 km is derived from column CO2  measurements from an airborne lidar flown underneath OCO-2 for use in this model. The model's performance is compared to previous ones.
                                            
                                            
                                        Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
                                    Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
                                            
                                            
                                        Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
                                    Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
                                            
                                            
                                        Cited articles
                        
                        Abramowitz, G., Pouyanné, L., and Ajami, H.: On the information content of surface meteorology for downward atmospheric long-wave radiation synthesis, Geophysical Research Letters, 39, https://doi.org/10.1029/2011GL050726, 2012. a
                    
                
                        
                        Belward, A. and Loveland, T.: The DIS 1km Land Cover Data Set, Global Change, The IGBP Newsletter No. 27, 7–9, http://www.igbp.net/download/18.950c2fa1495db7081e127/1416232583706/NL_271996.pdf (last access: 16 October 2025), September 1996. a
                    
                
                        
                        Bohren, C. and Clothiaux, E.: Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN 3-527-40503-8, 2006. a
                    
                
                        
                        Chen, B., Kasher, J., Maloney, J., Girgia, A., and Clark, D.: Determination of the clear sky emissivity for use in cool storage roof and roof pond applications, ASES Proceedings, Denver, CO, https://www.researchgate.net/publication/237705238_Determination_of_the_clear_sky_emissivity_for_use_in_cool_storage_roof_and_roof_pond_applications (last access: 16 October 2025), 1991. a
                    
                
                        
                        Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. a, b
                    
                
                        
                        Fabbri, B.: The Component Summation Technique for Measuring Upwelling Longwave Irradiance in the Presence of an Obstruction, National Aeronautics and Space Administration, Langley Research Center [data set] https://science-data.larc.nasa.gov/LaRC-SD-Publications/2025-07-25-001-BEF/data/ (last access: 16 October 2025), 2025. a
                    
                
                        
                        Fabbri, B., Schuster, G. L., Denn, F. M., Lin, B., Rutan, D. A., Su, W., Eitzen, Z. A., Madigan Jr., J. J., Arduini, R. F., and Loeb, N. G.: Upwelling longwave irradiance at Chesapeake Light Station measured in the presence of an obstruction with the component summation technique, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.984135, 2025. a
                    
                
                        
                        Feldman, D., Collins, W., Pincus, R., Huang, X., and Chen, X.: Far-infrared surface emissivity and climate, Proc. Natl. Acad. Sci., 111, 16297–16302, https://doi.org/10.1073/pnas.1413640111, 2014. a
                    
                
                        
                        Ha, K.-J., Nam, S., Jeong, J.-Y., Moon, I.-J., Lee, M., Yun, J., Jang, C. J., Kim, Y. S., Byun, D.-S., Heo, K.-Y., and Shim, J.-S.: Observations utilizing korea ocean research stations and their applications for process studies, B. Am. Meteorol. Soc., 100, 2061–2075, 2019. a
                    
                
                        
                        Holub, K. and Gutman, S.: Ground-Based Global Positioning System (GPS) Meteorology, Tech. Rep. Version 1.0, NOAA National Centers for Environmental Information (NCEI), https://doi.org/10.7289/V5DR2SHD, 2016. a, b
                    
                
                        
                        Hooker, S., Zibordi, G., Berthon, J.-F., D'Alimonte, D., van der Linde, D., and Brown, J.: Tower-Perturbation Measurements in Above-Water Radiometry, Tech. rep., NASA/TM-2003-206892, Vol. 23, https://ntrs.nasa.gov/api/citations/20040013188/down loads/20040013188.pdf (last access: 16 October 2025), 2003. a
                    
                
                        
                        Huang, X., Chen, X., Zhou, D., and Liu, X.: An Observationally Based Global Band-by-Band Surface Emissivity Dataset for Climate and Weather Simulations, J. Atmos. Sci., 73, 3541–3555, https://doi.org/10.1175/JAS-D-15-0355.1, 2016. a, b, c
                    
                
                        
                        Jin, Y., Schaaf, C. B., Woodcock, C. E., Gao, F., Li, X., Strahler, A. H., Lucht, W., and Liang, S.: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation, J. Geophys. Res., 108, https://doi.org/10.1029/2002JD002804, 2003. a
                    
                
                        
                        Kalinowska, M. B.: Effect of water–air heat transfer on the spread of thermal pollution in rivers, Acta Geophysica, 67, 597–619, 2019. a
                    
                
                        
                        Kato, S., Rose, F., Rutan, D., Thorsen, T., Loeb, N., Doelling, D., Huang, X., Smith, W., Su, W., and Ham, S.: Surface Irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product, Journal of Climate Dynamics, https://doi.org/10.1175/JCLI-D-17-0523.1, 2018. a
                    
                
                        
                        Kratz, D., Gupta, S., Wilber, A., and Sothcott, V.: Validation of the CERES Edition 2B Surface-Only Flux Algorithms, J. Appl. Meteor. Climatol., 49, 164–180, https://doi.org/10.1175/2009JAMC2246.1, 2010. a
                    
                
                        
                        Lee, H.-T., Laszlo, I., and Gruber, A.: ABI Earth Radiation Budget Upward Longwave Radiation: Surface (ULR) ATBD, Tech. Rep. Version 2.0, NOAA NESDIS Center for Satellite Applications and Research, https://www.goes-r.gov/products/ATBDs/option2/RadBud_DLR_v2.0_no_color.pdf (last access: 16 October 2025), 2010. a
                    
                
                        
                        Li, Z.-L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., Tang, B.-H., and Yan, G.: Land surface emissivity retrieval from satellite data, International Journal of Remote Sensing, 34, 3084–3127, 2011. a
                    
                
                        
                        McGill, R., Tukey, J., and Larsen, W.: Variations of Box Plots, The American Statistician, 32, 12–16, 1978. a
                    
                
                        
                        MISR-Team: Atmospheric Vortices near Guadalupe Island, https://earthobservatory.nasa.gov/images/987/atmospheric-
vortices-near-guadalupe-island (last access: 16 October 2025), 2000. a
                    
                
                        
                        Ohmura, A., Gilgen, H., Hegner, H., Müller, G., Wild, M., Dutton, E. G., Forgan, B., Fröhlich, C., Philipona, R., Heimo, A., König-Langlo, G., McArthur, B., Pinker, R., Whitlock, C. H., and Dehne, K.: Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research, B. Am. Meteorol. Soc., 79, 2115–2136, 1998. a, b
                    
                
                        
                        Rutan, D., Rose, F., Roman, M., Manalo-Smith, N., Schaaf, C., and Charlock, T.: Development and assessment of broadband surface albedo from Clouds and the Earth's Radiant Energy System clouds and radiation swath data product, J. Geophys. Res., 114, https://doi.org/10.1029/2008JD010669, 2009. a
                    
                
                        
                        Rutan, D., Kato, S., Doelling, D., Rose, F., Nguyen, L., Caldwell, T., and Loeb, N.: CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux, Journal of Atmospheric and Oceanic Technology, 32, 1121–1143, 2015. a
                    
                
                        
                        Rutledge, C., Schuster, G., Charlock, T., Denn, F., Smith Jr., W., Fabbri, B., Madigan, J., and Knapp, R.: Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment: A New “Laboratory” for Retrieval Algorithm Testing, B. Am. Meteorol. Soc., 87, 1211–1222, https://doi.org/10.1175/BAMS-87-9-1211, 2006.  a, b
                    
                
                        
                        Sridhar, V. and Elliot, R. L.: On the development of a simple downwelling longwave radiation scheme, Agricultural and Forest Meteorology, 112, 237–243, 2002. a
                    
                
                        
                        Staley, D. and Jurica, G.: Effective atmospheric emissivity under clear skies, Journal of Applied Meteorology and Climatology, 11, 348–356, 1972. a
                    
                
                        
                        Tian, J., Song, S., and He, H.: The relationship between soil emissivity and soil reflectance under the effects of soil water content, Physics of Chemistry and Earth, 110, 133–137, https://doi.org/10.1016/j.pce.2018.11.006, 2019. a
                    
                
                        
                        Wallace, J. and Hobbs, P.: Atmospheric Science: An Introductory Survey, Elsevier, ISBN: 978-0-12-732951-2, 2006. a
                    
                
                        
                        Wielicki, B., Barkstrom, B., Harrison, E., Lee III, R., Smith, G., and Cooper, J.: Clouds and the Earth's Radiant Energy System (CERES): An Earth observing system experiment, B. Am. Meteorol. Soc., 77, 853–868, 1996. a
                    
                
                        
                        Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X., and Yang, R.: Radiative sky cooling: Fundamental principles, materials, and applications, Applied Physics Reviews, 6, 021306, https://doi.org/10.1063/1.5087281, 2019. a, b, c
                    
                
                        
                        Zibordi, G., Holben, B., Hooker, S., Melin, F., Berthon, J.-F., Slutsker, I., Giles, D., Vandemark, D., Feng, H., Rutledge, K., Schuster, G., and Mandoos, A.: A Network for Standardized Ocean Color Validation Measurements, Eos Trans. AGU, 87, 293–297, 2006. a
                    
                
                        
                        Zibordi, G., Holben, B., Slutsker, I., Giles, D., D'Alimonte, D., Melin, F., Berthon, J.-F., Vandemark, D., Feng, H., Schuster, G., Fabbri, B., Kaitala, S., and Seppala, J.: AERONET–OC: A network for the validation of ocean color primary products, J. Atmos. Oceanic Technol., 26, 1634–1651, 2009. a
                    
                Short summary
            We present a new upwelling longwave (LW) measurement technique that eliminates obstruction influences on pyrgeometers by using an infrared thermometer, downwelling LW pyrgeometer, and air temperature probe. This approach can be implemented at locations with obstruction challenges and verify existing upwelling LW pyrgeometer measurements. Satellite projects like the Clouds and the Earth's Radiant Energy System depend on accurate surface measurements to validate their models.
            We present a new upwelling longwave (LW) measurement technique that eliminates obstruction...
            
         
 
             
             
            