Articles | Volume 18, issue 21
https://doi.org/10.5194/amt-18-6069-2025
https://doi.org/10.5194/amt-18-6069-2025
Research article
 | 
04 Nov 2025
Research article |  | 04 Nov 2025

Mixed layer height retrievals using MicroPulse Differential Absorption Lidar

Luke Colberg, Kevin S. Repasky, Matthew Hayman, Robert A. Stillwell, and Scott M. Spuler

Related authors

Expanding observational capabilities of diode-laser-based lidar through shot-to-shot modification of laser pulse characteristics
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
Atmos. Meas. Tech., 18, 4119–4130, https://doi.org/10.5194/amt-18-4119-2025,https://doi.org/10.5194/amt-18-4119-2025, 2025
Short summary
Signal processing to denoise and retrieve water vapor from multi-pulse-length lidar data
Matthew Hayman, Robert A. Stillwell, Adam Karboski, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3523,https://doi.org/10.5194/egusphere-2025-3523, 2025
Short summary
Neural network processing of holographic images
John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne
Atmos. Meas. Tech., 15, 5793–5819, https://doi.org/10.5194/amt-15-5793-2022,https://doi.org/10.5194/amt-15-5793-2022, 2022
Short summary
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022,https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021,https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary

Cited articles

Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008. a, b
Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., and Tzanis, C. G.: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign, Atmos. Res., 176–177, 185–201, https://doi.org/10.1016/j.atmosres.2016.02.024, 2016. a
Barlow, J. F., Dunbar, T. M., Nemitz, E. G., Wood, C. R., Gallagher, M. W., Davies, F., O'Connor, E., and Harrison, R. M.: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys., 11, 2111–2125, https://doi.org/10.5194/acp-11-2111-2011, 2011. a
Blay-Carreras, E., Pino, D., Vilà-Guerau de Arellano, J., van de Boer, A., De Coster, O., Darbieu, C., Hartogensis, O., Lohou, F., Lothon, M., and Pietersen, H.: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer, Atmos. Chem. Phys., 14, 4515–4530, https://doi.org/10.5194/acp-14-4515-2014, 2014. a
Bonin, T. A., Carroll, B. J., Hardesty, R. M., Brewer, W. A., Hajny, K., Salmon, O. E., and Shepson, P. B.: Doppler lidar observations of the mixing height in Indianapolis using an automated composite fuzzy logic approach, J. Atmos. Ocean. Technol., 35, 473 – 490, https://doi.org/10.1175/JTECH-D-17-0159.1, 2018. a, b
Download
Short summary
Two methods were developed to measure the mixed layer height, an important variable for weather forecasting and air quality studies. An aerosol-based method and a thermodynamic method were tested using a lidar system that can measure vertical profiles of aerosols, humidity, and temperature. Each method performed best under different conditions. Together, they provide a path toward more reliable mixed layer height monitoring with a single instrument.
Share