Articles | Volume 18, issue 21
https://doi.org/10.5194/amt-18-6251-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-6251-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Instrument uncertainties of network-suitable ground-based microwave radiometers: overview, quantification, and mitigation strategies
Institute for Geophysics and Meteorology, University of Cologne, 50923 Cologne, Germany
Moritz Löffler
Institute for Geophysics and Meteorology, University of Cologne, 50923 Cologne, Germany
German Meteorological Service (DWD), Technical Infrastructure and Operations, 14473 Potsdam, Germany
Tobias Marke
Institute for Geophysics and Meteorology, University of Cologne, 50923 Cologne, Germany
Bernhard Pospichal
CORRESPONDING AUTHOR
Institute for Geophysics and Meteorology, University of Cologne, 50923 Cologne, Germany
Christine Knist
German Meteorological Service (DWD), Meteorological Observatory Lindenberg – Richard Aßmann Observatory, 15848 Tauche OT Lindenberg, Germany
Ulrich Löhnert
Institute for Geophysics and Meteorology, University of Cologne, 50923 Cologne, Germany
Institute of Climate and Energy Systems, ICE-3: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Related authors
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Paolo Andreozzi, Mark D. Fielding, Robin J. Hogan, Richard M. Forbes, Samuel Rémy, Birger Bohn, and Ulrich Löhnert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3790, https://doi.org/10.5194/egusphere-2025-3790, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols significantly contribute to the Earth’s climate, but models still struggle at representing them. Here we use satellite observations of clouds to improve aerosols in our weather and air-quality model. We show that African wildfires induce too bright simulated clouds and that our model removes too much aerosol from ice-containing clouds. This showcases how our approach effectively targets poorly observed aerosol processes, potentially informing weather forecasting and climate models.
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech., 18, 2041–2067, https://doi.org/10.5194/amt-18-2041-2025, https://doi.org/10.5194/amt-18-2041-2025, 2025
Short summary
Short summary
Atmospheric stability indicates whether air vertical motion is dumped or amplified. This is important for wind energy applications as it affects wind turbine wakes and thus the yield of wind parks. The paper provides an assessment of stability metrics measured by ground-based microwave radiometers in different climatological conditions and instrument types, onshore and offshore. Results indicate that special precaution may be required offshore to achieve typical onshore performances.
Laura Köhler, Julia Windmiller, Dariusz Baranowski, Michał Brennek, Michał Ciuryło, Lennéa Hayo, Daniel Kȩpski, Stefan Kinne, Beata Latos, Bertrand Lobo, Tobias Marke, Timo Nischik, Daria Paul, Piet Stammes, Artur Szkop, and Olaf Tuinder
Earth Syst. Sci. Data, 17, 633–659, https://doi.org/10.5194/essd-17-633-2025, https://doi.org/10.5194/essd-17-633-2025, 2025
Short summary
Short summary
We present atmospheric and oceanic data from the Atlantic References and Convection ship campaign with the Maria S. Merian from Mindelo to Punta Arenas observed with the integrated ship sensors; humidity and temperature profiler; ceilometer; aerosol instruments (Calitoo, Microtops, and DustTrak); radiosondes; uncrewed aircraft vehicles; and conductivity, temperature, and depth scans. The data include three complete profiles of the Intertropical Convergence Zone and a storm in the South Atlantic.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Nils Eingrüber, Wolfgang Korres, Ulrich Löhnert, and Karl Schneider
Adv. Sci. Res., 20, 65–71, https://doi.org/10.5194/asr-20-65-2023, https://doi.org/10.5194/asr-20-65-2023, 2023
Short summary
Short summary
Sensitivity analyses for wind direction effects upon an ENVI-met microclimate model were performed for a heterogeneous urban study area. Significant temperature differences were found when forcing the model with constant N/E/S/W wind direction data. Best model performance was observed using measured wind direction forcing data. The results demonstrate that cooling effects of park areas are largely directional which is important for urban planning and design of climate change adaptation measures.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, https://doi.org/10.5194/amt-14-3033-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the lowest couple of kilometers near the surface are very important for many applications. Passive spectral radiometers are commercially available, and observations from these instruments have been used to get these profiles. However, new active lidar systems are able to measure partial profiles of water vapor. This paper investigates how the derived profiles of water vapor and temperature are improved when the active and passive observations are combined.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Cited articles
Böck, T., Pospichal, B., and Löhnert, U.: Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling, Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, 2024.
Böck, T., Pospichal, B., Marke T., and Löhnert, U.: Calibration experiments of ground-based microwave radiometers, Zenodo [data set], https://doi.org/10.5281/zenodo.17407965, 2025
Carminati, F., Migliorini, S., Ingleby, B., Bell, W., Lawrence, H., Newman, S., Hocking, J., and Smith, A.: Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation, Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, 2019.
Caumont, O., Cimini, D., Löhnert, U., Alados-Arboledas, L., Bleisch, R., Buffa, F., Ferrario, M. E., Haefele, A., Huet, T., Madonna, F., and Pace, G.: Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model, Q. J. Roy. Meteorol. Soc., 142, 2692–2704, https://doi.org/10.1002/qj.2860, 2016.
Cimini, D., Campos, E., Ware, R., Albers, S., Giuliani, G., Oreamuno, J., Joe, P., Koch, S. E., Cober, S., and Westwater, E.: Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry, IEEE T. Geosci. Remote, 49, 4959–4969, https://doi.org/10.1109/TGRS.2011.2154337, 2011.
Cimini, D., Haeffelin, M., Kotthaus, S., Löhnert, U., Martinet, P., O'Connor, E., Walden, C., Coen, M. C., and Preissler, J.: Towards the profiling of the atmospheric boundary layer at European scale – introducing the COST Action PROBE, Bulletin of Atmospheric Science and Technology, 1, 23–42, https://doi.org/10.1007/s42865-020-00003-8, 2020.
Cimini, D., Rosenkranz, P. W., Tretyakov, M. Y., Koshelev, M. A., and Romano, F.: Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals, Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, 2018.
Crewell, S. and Löhnert, U.: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy, Radio Science, 38, https://doi.org/10.1029/2002RS002634, 2003.
Crewell, S. and Löhnert, U.: Accuracy of Boundary Layer Temperature Profiles Retrieved With Multifrequency Multiangle Microwave Radiometry, IEEE T. Geosci. Remote, 45, 2195–2201, https://doi.org/10.1109/tgrs.2006.888434, 2007.
De Angelis, F., Cimini, D., Hocking, J., Martinet, P., and Kneifel, S.: RTTOV-gb – adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations, Geosci. Model Dev., 9, 2721–2739, https://doi.org/10.5194/gmd-9-2721-2016, 2016.
De Angelis, F., Cimini, D., Löhnert, U., Caumont, O., Haefele, A., Pospichal, B., Martinet, P., Navas-Guzmán, F., Klein-Baltink, H., Dupont, J.-C., and Hocking, J.: Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network, Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, 2017.
Foth, A., Lochmann, M., Saavedra Garfias, P., and Kalesse-Los, H.: Determination of low-level temperature profiles from microwave radiometer observations during rain, Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024, 2024.
Han, Y. and Westwater, E. R.: Analysis and improvement of tipping calibration for ground-based microwave radiometers, IEEE T. Geosci. Remote, 38, 1260–1276, https://doi.org/10.1109/36.843018, 2000.
Hohenegger, C., Ament, F., Beyrich, F., et al.: FESSTVaL: The Field Experiment on Submesoscale Spatio-Temporal Variability in Lindenberg, Bull. Amer. Meteor. Soc., 104, E1875–E1892, https://doi.org/10.1175/BAMS-D-21-0330.1, 2023.
Küchler, N., Turner, D. D., Löhnert, U., and Crewell, S.: Calibrating ground-based microwave radiometers: Uncertainty and drifts, Radio Science, 51, 311–327, https://doi.org/10.1002/2015rs005826, 2016.
Laj, P., Lund Myhre, C., Riffault, V., et al.: Aerosol, clouds and trace gases research infrastructure (ACTRIS): The European research infrastructure supporting atmospheric science, B. Am. Meteorol. Soc., 105, E1098–E1136, https://doi.org/10.1175/BAMS-D-23-0064.1, 2024
Liljegren, J. C.: Microwave radiometer profiler handbook: evaluation of a new multi-frequency microwave radiometer for measuring the vertical distribution of temperature, water vapour, and cloud liquid water, DOE Atmospheric Radiation Measurement (ARM) Program, https://www.researchgate.net/publication/268297932_Evaluation_of_a_New_Multi-Frequency_Microwave_Radiometer_for_ Measuring_the_Vertical_Distribution_of_Temperature_ Water_Vapor_and_Cloud_Liquid_Water_Prepared_by (last access: 20 March 2025), 2002.
Löffler, M.: HATPRO MWR rain flagging and radome status monitoring, Zenodo, https://doi.org/10.5281/zenodo.10984797, 2024.
Löhnert, U. and Crewell, S.: Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics, Radio Science, 38, https://doi.org/10.1029/2002RS002654, 2003.
Löhnert, U. and Maier, O.: Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges, Atmos. Meas. Tech., 5, 1121–1134, https://doi.org/10.5194/amt-5-1121-2012, 2012.
Löhnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M., Barrera-Verdejo, M., Hirsikko, A., Bohn, B., Knaps, A., O'Connor, E., Simmer, C., Wahner, A., and Crewell, S.: JOYCE: Jülich Observatory for Cloud Evolution, B. Am. Meteorol. Soc., 96, 1157–1174, https://doi.org/10.1175/BAMS-D-14-00105.1, 2015.
Löhnert, U., Knist, C., Böck, T., and Pospichal, B.: Microwave Radiometer Observations during FESSTVaL 2021 (Version 00), University of Hamburg [data set], https://doi.org/10.25592/uhhfdm.10198, 2022.
Marke, T., Löhnert, U., Schemann, V., Schween, J. H., and Crewell, S.: Detection of land-surface-induced atmospheric water vapor patterns, Atmos. Chem. Phys., 20, 1723–1736, https://doi.org/10.5194/acp-20-1723-2020, 2020.
Marke, T., Löhnert, U., Tukiainen, S., Siipola, T., and Pospichal, B.: MWRpy: A Python package for processing microwave radiometer data, Journal of Open Source Software, 9, 6733, https://doi.org/10.21105/joss.06733, 2024.
Martinet, P., Cimini, D., De Angelis, F., Canut, G., Unger, V., Guillot, R., Tzanos, D., and Paci, A.: Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study, Atmos. Meas. Tech., 10, 3385–3402, https://doi.org/10.5194/amt-10-3385-2017, 2017.
Martinet, P., Cimini, D., Burnet, F., Ménétrier, B., Michel, Y., and Unger, V.: Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study, Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, 2020.
Maschwitz, G., Löhnert, U., Crewell, S., Rose, T., and Turner, D. D.: Investigation of ground-based microwave radiometer calibration techniques at 530 hPa, Atmos. Meas. Tech., 6, 2641–2658, https://doi.org/10.5194/amt-6-2641-2013, 2013.
Meunier, V., Löhnert, U., Kollias, P., and Crewell, S.: Biases caused by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers, Atmos. Meas. Tech., 6, 1171–1187, https://doi.org/10.5194/amt-6-1171-2013, 2013.
O'Connor, E.: Custom collection of model data from Jülich between 1 Jan and 31 Dec 2022, ACTRIS Cloud remote sensing data centre unit (CLU), Finnish Meteorological Institute [data set], https://doi.org/10.60656/700ccef44b024359, 2025.
Park, S. G., Kim, H.-L., Ham, Y.-W., and Jung, S.-H.: Comparative Evaluation of the OTT PARSIVEL2 Using a Collocated Two-Dimensional Video Disdrometer, Journal of Atmospheric and Oceanic Technology, 34, 2059–2082, https://doi.org/10.1175/jtech-d-16-0256.1, 2017.
Pospichal, B. and Löhnert, U.: Custom collection of MWR brightness temperature data from Jülich between 1 Jan and 31 Dec 2022, ACTRIS Cloud remote sensing data centre unit (CLU), Finnish Meteorological Institute [data set], https://doi.org/10.60656/b6d009f082744d9a, 2025.
Pospichal, B., Maschwitz, G., Küchler, N., and Rose, T.: Standing wave patterns at liquid nitrogen calibration of microwave radiometers, 9th International Symposium on Tropospheric Profiling (ISTP), Proceedings of the 9th ISTP, https://doi.org/10.12898/ISTP9prc, 2012.
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere, Atmos. Res., 75, 183–200, https://doi.org/10.1016/j.atmosres.2004.12.005, 2005.
Rosenkranz, P. W.: Line-by-Line Microwave Radiative Transfer (Non-Scattering), Remote Sens. Code Library, http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html (last access: 17 October 2025), 2017.
Rosenkranz, P. W. and Cimini, D.: Speed Dependence of 22- and 118-GHz Line Shapes for Tropospheric Remote Sensing, IEEE T. Geosci. Remote, 57, 9702–8, https://doi.org/10.1109/TGRS.2019.2928570, 2019.
RPG-Radiometer Physics GmbH: Operation principles for RPG standard single polarization radiometers: The New Precision LN2 Calibration Target PT-V1 for RPG radiometers, https://www.radiometer-physics.de/download/PDF/Radiometers/HATPRO/RPG_G5_LN2_AN_2016.pdf (last access: 22 February 2024), 2016.
RPG-Radiometer Physics GmbH: Operation principles for RPG standard single polarization radiometers: Profiling Radiometers RPG-HATPRO-G5 series, https://www.radiometer-physics.de/download/PDF/Radiometers/HATPRO/RPG_MWR_PRO-G5_TN 2022.pdf (last access: 22 February 2024), 2022a.
RPG-Radiometer Physics GmbH: Operation principles for RPG standard single polarization radiometers: The Precision Target PT-V2 for the Liquid Nitrogen (LN2) Calibration of RPG radiometers, https://www.radiometer-physics.de/download/PDF/Radiometers/HATPRO/RPG_G5_LN_AN 2022.pdf and https://www.radiometer-physics.de/download/PDF/Radiometers/HATPRO/RPG_G5_LN2_AN_2016.pdf (last access: 22 February 2024), 2022b.
Rüfenacht, R., Haefele, A., Pospichal, B., Cimini, D., Bircher-Adrot, S., Turp, M., and Sugier, J.: EUMETNET opens to microwave radiometers for operational thermodynamical profiling in Europe, B. Am. Meteorol. Soc., 2, https://doi.org/10.1007/s42865-021-00033-w, 2021.
Salmi, A., Ikonen, J., and Oyj, V.: Piezoelectric precipitation sensor from Vaisala, WMO Technical Conference on Instruments and Methods of Observation (TECO-2005), 4–7 pp., Bucharest, Romania, https://citeseerx.ist.psu.edu/document?repid=rep1type=pdfdoi=6327e92a8241056e6f7ef7d839e2da68217b92c4 (last access: 20 March 2025), 2005
Teixeira, J., Piepmeier, J. R., Nehrir, A. R., Ao, C. O., Chen, S. S., Clayson, C. A., Fridlind, A. M., Lebsock, M., McCarty, W., Salmun, H., Santanello, J. A., Turner, D. D., Wang, Z., and Zeng, X.: Toward a Global Planetary Boundary Layer Observing System: The NASA PBL Incubation Study Team Report, NASA PBL Incubation Study Team, 134 pp., https://ntrs.nasa.gov/citations/20230001633 (last access: 29 October 2025), 2021.
Ulaby, F. T. and Long, D. G.: Microwave Radar and Radiometric Remote Sensing, The University of Michigan Press, ISBN 978-0-472-11935-6, 2014.
Vural, J., Merker, C., Löffler, M., Leuenberger, D., Schraff, C., Stiller, O., Schomburg, A., Knist, C., Haefele, A., and Hervo, M.: Improving the representation of the atmospheric boundary layer by direct assimilation of ground-based microwave radiometer observations, Q. J. Roy. Meteorol. Soc., 150, 1012–1028, https://doi.org/10.1002/qj.4634, 2024.
Ware, R., Cimini, D., Campos, E., Giuliani, G., Albers, S., Nelson, M., Koch, S. E., Joe, P., and Cober, S.: Thermodynamic and liquid profiling during the 2010 Winter Olympics, Atmos. Res., 132–133, 278–290, https://doi.org/10.1016/j.atmosres.2013.05.019, 2013.
Xu, G., Ware, R., Zhang, W., Feng, G., Liao, K., and Liu, Y.: Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy, Atmos. Res., 140–141, 85–94, https://doi.org/10.1016/j.atmosres.2014.01.021, 2014.
Short summary
We investigated how accurate modern ground-based weather sensors are in measuring temperature and humidity within the lower atmosphere. We identified different types of small but important measurement error inherent to the instruments. Understanding these issues helps improve data quality and supports better short-term weather forecasts using sensor networks across Europe.
We investigated how accurate modern ground-based weather sensors are in measuring temperature...