Guérin, C.-A., Capelle, V., and Hartmann, J.-M.: Revisiting the Cox and Munk wave-slope statistics using IASI observations of the sea surface, Remote Sensing of Environment, 288, 113508, https://doi.org/10.1016/j.rse.2023.113508, 2023.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, 12, 32–37, https://doi.org/10.1093/ije/27.2.335, 1973.
Hauser, D., Caudal, G., Guimbard, S., and Mouche, A.: Reply to comment by Paul A. Hwang on “A study of the slope probability density function of the ocean waves from radar observations” by D. Hauser et al., Journal of Geophysical Research: Oceans, 114, https://doi.org/10.1029/2008JC005117, 2009.
Hauser, D., Tison, C., Amiot, T., Delaye, L., Corcoral, N., and Castillan, P.: SWIM: The First Spaceborne Wave Scatterometer, IEEE Transactions on Geoscience and Remote Sensing, 55, 3000–3014, https://doi.org/10.1109/TGRS.2017.2658672, 2017.
Hauser, D., Tourain, C., Hermozo, L., Alraddawi, D., Aouf, L., Chapron, B., Dalphinet, A., Delaye, L., Dalila, M., Dormy, E., Gouillon, F., Gressani, V., Grouazel, A., Guitton, G., Husson, R., Mironov, A., Mouche, A., Ollivier, A., Oruba, L., Piras, F., Rodriguez Suquet, R., Schippers, P., Tison, C., and Tran, N.: New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment, IEEE Trans. Geosci. Remote Sensing, 59, 5–26, https://doi.org/10.1109/TGRS.2020.2994372, 2021.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Computing in Science and Engineering, 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Hwang, P. A.: Comment on “A study of the slope probability density function of the ocean waves from radar observations” by D. Hauser et al., Journal of Geophysical Research: Oceans, 114, https://doi.org/10.1029/2008JC005005, 2009.
Hwang, P. A.: A Note on the Ocean Surface Roughness Spectrum, Journal of Atmospheric and Oceanic Technology, 28, 436–443, https://doi.org/10.1175/2010JTECHO812.1, 2011.
Hwang, P. A. and Fois, F.: Inferring surface roughness and breaking wave properties from polarimetric radar backscattering, in: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IGARSS 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2529–2532, https://doi.org/10.1109/IGARSS.2015.7326326, 2015a.
Hwang, P. A. and Fois, F.: Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering: NRCS roughness and breaking, J. Geophys. Res.-Oceans, 120, 3640–3657, https://doi.org/10.1002/2015JC010782, 2015b.
Hwang, P. A., Burrage, D. M., Wang, D. W., and Wesson, J. C.: Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations, Journal of Atmospheric and Oceanic Technology, 30, 2168–2188, https://doi.org/10.1175/JTECH-D-12-00239.1, 2013.
Karaev, V., Kanevsky, M., and Meshkov, E.: The Effect of Sea Surface Slicks on the Doppler Spectrum Width of a Backscattered Microwave Signal, Sensors, 8, 3780–3801, https://doi.org/10.3390/s8063780, 2008.
Merle, E. L., Hauser, D., Peureux, C., Aouf, L., Schippers, P., and Dufour, C.: Directional and Frequency Spread of Surface Ocean Waves from CFOSAT/SWIM Measurements, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 7390–7393, https://doi.org/10.1109/IGARSS47720.2021.9553868, 2021.
Mitsuyasu, H.: Measurement of the High-Frequency Spectrum of Ocean Surface Waves, Journal of Physical Oceanography, 7, 882–891, https://doi.org/10.1175/1520-0485(1977)007<0882:MOTHFS>2.0.CO;2, 1977.
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and Rikiishi, K.: Observation of the Power Spectrum of Ocean Waves Using a Cloverleaf Buoy, Journal of Physical Oceanography, 10, 286–296, https://doi.org/10.1175/1520-0485(1980)010<0286:OOTPSO>2.0.CO;2, 1980.
National Data Buoy Center (NDBC): NDBC Web Data Guide, Version 2.0, NDBC, Stennis Space Center, Mississippi, USA,
https://www.ndbc.noaa.gov/docs/ndbc_web_data_guide.pdf (last access: 2 November 2025), 2023.
Neumann, G.: On ocean wave spectra and a new method of forecasting wind-generated sea, U.S. Beach Erosion Board, Tech. Memo. No. 43, 42 pp., Washington,
https://erdc-library.erdc.dren.mil/bitstreams/81b728f8-7456-4ef8-e053-411ac80adeb3/download (last access: 2 November 2025), 1953.
Pierson Jr., W. J. and Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, Journal of Geophysical Research (1896–1977), 69, 5181–5190, https://doi.org/10.1029/JZ069i024p05181, 1964.
Ryabkova, M., Karaev, V., Guo, J., and Titchenko, Yu.: A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface, J. Geophys. Res.-Oceans, 124, 7104–7134, https://doi.org/10.1029/2018JC014804, 2019.
Tison, C. and Hauser, D.: SWIM Products User Guide – Product description and Algorithm Theoretical Baseline Description, CNES, Toulouse, France, Technical Report CF-GSFR-MU-2530-CNES, Issue 02, 95 pp.,
https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/SWIM_ProductUserGuide.pdf (last access: 2 November 2025), 2019.
Wang, Y., Xu, X., and Xu, Y.: Comparisons on One-dimensional Ocean Wave Spectrum Models Based on SWIM/CFOSAT Observations, CNKI, Chinese Journal of Space Science, 43, 1111–1124, https://doi.org/10.11728/cjss2023.06.2023-0068, 2023.
Wang, Y., Xu, X., and Dong, Z.: One-Dimensional Wave Spectrum Comparison and Evaluation Dataset Based on 2022 SWIM Spectrometer Observation Data[DS/OL]. V2. Science Data Bank [data set], https://doi.org/10.57760/sciencedb.30965, 2025.
Xu, Y., Hauser, D., Liu, J., Si, J., Yan, C., Chen, S., Meng, J., Fan, C., Liu, M., and Chen, P.: Statistical Comparison of Ocean Wave Directional Spectra Derived From SWIM/CFOSAT Satellite Observations and From Buoy Observations, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20, https://doi.org/10.1109/TGRS.2022.3199393, 2022.