Articles | Volume 18, issue 3
https://doi.org/10.5194/amt-18-817-2025
https://doi.org/10.5194/amt-18-817-2025
Research article
 | 
13 Feb 2025
Research article |  | 13 Feb 2025

Performance evaluation of Atmotube PRO sensors for air quality measurements in an urban location

Aishah I. Shittu, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Ailish M. Graham, Carly Reddington, Richard Rigby, and James B. McQuaid

Related authors

Understanding drivers and biases of simulated CO emissions by the INFERNO fire model over South America
Maria P. Veláquez-García, Richard J. Pope, Steven T. Turnock, Chetan Deva, David P. Moore, Guilherme Mataveli, Steve R. Arnold, Ruth M. Doherty, and Martyn P. Chiperffield
EGUsphere, https://doi.org/10.5194/egusphere-2025-3579,https://doi.org/10.5194/egusphere-2025-3579, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Influence of nitrogen oxides and volatile organic compounds emission changes on tropospheric ozone variability, trends and radiative effect
Suvarna Fadnavis, Yasin Elshorbany, Jerald Ziemke, Brice Barret, Alexandru Rap, P. R. Satheesh Chandran, Richard J. Pope, Vijay Sagar, Domenico Taraborrelli, Eric Le Flochmoen, Juan Cuesta, Catherine Wespes, Folkert Boersma, Isolde Glissenaar, Isabelle De Smedt, Michel Van Roozendael, Hervé Petetin, and Isidora Anglou
Atmos. Chem. Phys., 25, 8229–8254, https://doi.org/10.5194/acp-25-8229-2025,https://doi.org/10.5194/acp-25-8229-2025, 2025
Short summary
Biosphere–atmosphere related processes influence trace-gas and aerosol satellite–model biases
Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor
Atmos. Chem. Phys., 25, 7269–7297, https://doi.org/10.5194/acp-25-7269-2025,https://doi.org/10.5194/acp-25-7269-2025, 2025
Short summary
Drivers of change in peak-season surface ozone concentrations and impacts on human health over the historical period (1850–2014)
Steven T. Turnock, Dimitris Akritidis, Larry Horowitz, Mariano Mertens, Andrea Pozzer, Carly L. Reddington, Hantao Wang, Putian Zhou, and Fiona O'Connor
Atmos. Chem. Phys., 25, 7111–7136, https://doi.org/10.5194/acp-25-7111-2025,https://doi.org/10.5194/acp-25-7111-2025, 2025
Short summary
Antarctic Ice Sheet grounding line discharge from 1996–2024
Benjamin J. Davison, Anna E. Hogg, Thomas Slater, Richard Rigby, and Nicolaj Hansen
Earth Syst. Sci. Data, 17, 3259–3281, https://doi.org/10.5194/essd-17-3259-2025,https://doi.org/10.5194/essd-17-3259-2025, 2025
Short summary

Cited articles

Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M. L., and Polichetti, T.: A Review of Low-Cost Particulate Matter Sensors from the Developers' Perspectives, Sensors, 20, 6819, https://doi.org/10.3390/s20236819, 2020. 
AQMD: Field Evaluation Atmotube Pro, Air Quality Sensor performance Evaluation Centre, https://www.aqmd.gov/aq-spec (last access: 30 January 2025), 2020. 
Atmotube: Atmotube Technical Specifications, https://atmotube.com/atmotube-support/atmotube-technical-specification (last access: 24 July 2023), 2023. 
Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements, SN (Springer) Appl. Sci., 1, 622, https://doi.org/10.1007/s42452-019-0630-1, 2019. 
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. 
Download
Short summary
The study highlighted the performance of Atmotube PRO sensor particulate matter (PM) data. The result showed inter-sensor variability among the Atmotube PRO sensor data. This study showed 62.5 % of the sensors used for the study exhibited greater precision in their PM2.5 measurements. The overall performance showed that sensors passed the base testing using 1 h averaged data and that a multiple linear regression model using relative humidity values improved the performance of the PM2.5 data.
Share