Articles | Volume 7, issue 7
https://doi.org/10.5194/amt-7-2185-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-7-2185-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality
E. Hache
GAME/CNRM, Météo-France, UMR3589, CNRS, Toulouse, France
Université de Toulouse, CNRS, Laboratoire d'Aérologie, Toulouse, France
J.-L. Attié
GAME/CNRM, Météo-France, UMR3589, CNRS, Toulouse, France
Université de Toulouse, CNRS, Laboratoire d'Aérologie, Toulouse, France
C. Tourneur
EADS Astrium, Toulouse, France
P. Ricaud
GAME/CNRM, Météo-France, UMR3589, CNRS, Toulouse, France
L. Coret
EADS Astrium, Toulouse, France
W. A. Lahoz
NILU – Norwegian Institute for Air Research, 2027, Kjeller, Norway
L. El Amraoui
GAME/CNRM, Météo-France, UMR3589, CNRS, Toulouse, France
B. Josse
GAME/CNRM, Météo-France, UMR3589, CNRS, Toulouse, France
P. Hamer
GAME/CNRM, Météo-France, UMR3589, CNRS, Toulouse, France
J. Warner
The University of Maryland, College Park, MD 20742, USA
X. Liu
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
K. Chance
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
M. Höpfner
Karlsruhe Institute of Technology, IMK, Karlsruhe, Germany
R. Spurr
RT Solutions, Inc. 9 Channing Street, Cambridge, MA 02138, USA
V. Natraj
Jet Propulsion Laboratory (NASA-JPL), 4800 Oak Grove Drive, Pasadena, CA 91109, USA
S. Kulawik
Jet Propulsion Laboratory (NASA-JPL), 4800 Oak Grove Drive, Pasadena, CA 91109, USA
A. Eldering
Jet Propulsion Laboratory (NASA-JPL), 4800 Oak Grove Drive, Pasadena, CA 91109, USA
J. Orphal
Karlsruhe Institute of Technology, IMK, Karlsruhe, Germany
Viewed
Total article views: 3,557 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Feb 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,733 | 1,698 | 126 | 3,557 | 108 | 96 |
- HTML: 1,733
- PDF: 1,698
- XML: 126
- Total: 3,557
- BibTeX: 108
- EndNote: 96
Total article views: 2,771 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Jul 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,325 | 1,342 | 104 | 2,771 | 91 | 83 |
- HTML: 1,325
- PDF: 1,342
- XML: 104
- Total: 2,771
- BibTeX: 91
- EndNote: 83
Total article views: 786 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Feb 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
408 | 356 | 22 | 786 | 17 | 13 |
- HTML: 408
- PDF: 356
- XML: 22
- Total: 786
- BibTeX: 17
- EndNote: 13
Cited
11 citations as recorded by crossref.
- Assimilation of satellite NO<sub>2</sub> observations at high spatial resolution using OSSEs X. Liu et al. 10.5194/acp-17-7067-2017
- The Ozone Monitoring Instrument: overview of 14 years in space P. Levelt et al. 10.5194/acp-18-5699-2018
- What temporal resolution is required for remote sensing of regional aerosol concentrations using the Himawari-8 geostationary satellite M. Sowden et al. 10.1016/j.atmosenv.2019.116914
- Observing System Simulation Experiments for air quality R. Timmermans et al. 10.1016/j.atmosenv.2015.05.032
- Data Fusion Analysis of Sentinel-4 and Sentinel-5 Simulated Ozone Data C. Tirelli et al. 10.1175/JTECH-D-19-0063.1
- The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes P. Hamer et al. 10.5194/acp-15-10645-2015
- Formaldehyde column density measurements as a suitable pathway to estimate near‐surface ozone tendencies from space J. Schroeder et al. 10.1002/2016JD025419
- Importance of interpolation and coincidence errors in data fusion S. Ceccherini et al. 10.5194/amt-11-1009-2018
- Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties D. Tarasick et al. 10.1525/elementa.376
- Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations L. El Amraoui et al. 10.5194/amt-13-4645-2020
- Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview U. Cortesi et al. 10.3390/atmos9110454
11 citations as recorded by crossref.
- Assimilation of satellite NO<sub>2</sub> observations at high spatial resolution using OSSEs X. Liu et al. 10.5194/acp-17-7067-2017
- The Ozone Monitoring Instrument: overview of 14 years in space P. Levelt et al. 10.5194/acp-18-5699-2018
- What temporal resolution is required for remote sensing of regional aerosol concentrations using the Himawari-8 geostationary satellite M. Sowden et al. 10.1016/j.atmosenv.2019.116914
- Observing System Simulation Experiments for air quality R. Timmermans et al. 10.1016/j.atmosenv.2015.05.032
- Data Fusion Analysis of Sentinel-4 and Sentinel-5 Simulated Ozone Data C. Tirelli et al. 10.1175/JTECH-D-19-0063.1
- The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes P. Hamer et al. 10.5194/acp-15-10645-2015
- Formaldehyde column density measurements as a suitable pathway to estimate near‐surface ozone tendencies from space J. Schroeder et al. 10.1002/2016JD025419
- Importance of interpolation and coincidence errors in data fusion S. Ceccherini et al. 10.5194/amt-11-1009-2018
- Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties D. Tarasick et al. 10.1525/elementa.376
- Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations L. El Amraoui et al. 10.5194/amt-13-4645-2020
- Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview U. Cortesi et al. 10.3390/atmos9110454
Saved (final revised paper)
Latest update: 08 Dec 2023