Articles | Volume 7, issue 10
https://doi.org/10.5194/amt-7-3233-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-7-3233-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing
S. Kox
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
now at: European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany
L. Bugliaro
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
A. Ostler
Karlsruher Institut für Technologie, Institut für Meteorologie und Klimaforschung (IMK-IFU), Garmisch-Partenkirchen, Germany
Viewed
Total article views: 6,074 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,443 | 3,501 | 130 | 6,074 | 150 | 125 |
- HTML: 2,443
- PDF: 3,501
- XML: 130
- Total: 6,074
- BibTeX: 150
- EndNote: 125
Total article views: 4,490 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Oct 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,075 | 2,325 | 90 | 4,490 | 131 | 115 |
- HTML: 2,075
- PDF: 2,325
- XML: 90
- Total: 4,490
- BibTeX: 131
- EndNote: 115
Total article views: 1,584 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
368 | 1,176 | 40 | 1,584 | 19 | 10 |
- HTML: 368
- PDF: 1,176
- XML: 40
- Total: 1,584
- BibTeX: 19
- EndNote: 10
Cited
46 citations as recorded by crossref.
- VIIRS Edition 1 Cloud Properties for CERES, Part 2: Evaluation with CALIPSO C. Yost et al. 10.3390/rs15051349
- Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm D. Miller et al. 10.5194/amt-13-3447-2020
- The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development D. Piontek et al. 10.3390/rs13163112
- Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts B. Gasparini et al. 10.5194/acp-23-15413-2023
- Particle reflectivity and movements in cirrus clouds over Beijing from four years of Ka radar measurements J. Huo et al. 10.1016/j.atmosres.2020.105211
- Seasonal distribution of cirrus cloud characteristics and their rapid descent from polarization lidar measurements at the west coast of India M. Aswini et al. 10.1007/s00704-023-04518-w
- Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks J. Strandgren et al. 10.5194/amt-10-3547-2017
- An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions M. Plu et al. 10.5194/nhess-21-2973-2021
- Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network S. Sun-Mack et al. 10.5194/amt-17-3323-2024
- Cirrus Clouds A. Heymsfield et al. 10.1175/AMSMONOGRAPHS-D-16-0010.1
- Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations M. Segal-Rozenhaimer et al. 10.1016/j.jqsrt.2018.08.030
- A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1 S. Larosa et al. 10.3390/rs15071798
- Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method P. Minnis et al. 10.1002/2015JD024456
- Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks C. White et al. 10.5194/amt-14-3371-2021
- How Well Can Persistent Contrails Be Predicted? K. Gierens et al. 10.3390/aerospace7120169
- Algorithm for Interpreting Light Backscattering Matrices of Cirrus Clouds for the Retrieval of Their Microphysical Parameters V. Shishko et al. 10.1134/S1024856019040134
- How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties J. Mayer et al. 10.5194/amt-17-5161-2024
- Constraining Ice Water Content of Thin Antarctic Cirrus Clouds Using Ground-Based Lidar and Satellite Data S. Alexander & A. Klekociuk 10.1175/JAS-D-20-0251.1
- Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017 J. Huo et al. 10.5194/acp-20-14377-2020
- A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations C. Wang et al. 10.5194/amt-13-2257-2020
- Retrieval of Vertical Profile of Cirrus Cloud Effective Particle Size Using Reflected Line Spectra in 1.38 μm Band Y. Gu et al. 10.1029/2020EA001119
- Cloud and DNI nowcasting with MSG/SEVIRI for the optimized operation of concentrating solar power plants T. Sirch et al. 10.5194/amt-10-409-2017
- Bayesian cloud-top phase determination for Meteosat Second Generation J. Mayer et al. 10.5194/amt-17-4015-2024
- Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking A. Taravat et al. 10.3390/rs70201529
- CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System G. Stephens et al. 10.1175/BAMS-D-16-0324.1
- Neural network cloud top pressure and height for MODIS N. Håkansson et al. 10.5194/amt-11-3177-2018
- 基于神经网络反演中国南海海域透明卷云参数 陆. Lu Wenqiang et al. 10.3788/AOS230605
- A global record of single-layered ice cloud properties and associated radiative heating rate profiles from an A-Train perspective E. Dolinar et al. 10.1007/s00382-019-04682-8
- Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers D. Piontek et al. 10.3390/rs15051247
- The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation D. Piontek et al. 10.3390/rs13163128
- Contrail altitude estimation using GOES-16 ABI data and deep learning V. Meijer et al. 10.5194/amt-17-6145-2024
- An extended lidar-based cirrus cloud retrieval scheme: first application over an Arctic site K. Nakoudi et al. 10.1364/OE.414770
- Deep-Learning-Based Daytime COT Retrieval and Prediction Method Using FY4A AGRI Data F. Xu et al. 10.3390/rs16122136
- Ice water path retrievals from Meteosat-9 using quantile regression neural networks A. Amell et al. 10.5194/amt-15-5701-2022
- Atmospheric Correction Above Clouds for FY-4A AGRI Based on RTTOV Y. Wang et al. 10.1109/TGRS.2024.3494743
- Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization Y. Cheng et al. 10.3390/s24020541
- VADUGS: a neural network for the remote sensing of volcanic ash with MSG/SEVIRI trained with synthetic thermal satellite observations simulated with a radiative transfer model L. Bugliaro et al. 10.5194/nhess-22-1029-2022
- Cloud identification and property retrieval from Himawari-8 infrared measurements via a deep neural network X. Wang et al. 10.1016/j.rse.2022.113026
- ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO C. Voigt et al. 10.1175/BAMS-D-15-00213.1
- CERES MODIS Cloud Product Retrievals for Edition 4—Part II: Comparisons to CloudSat and CALIPSO C. Yost et al. 10.1109/TGRS.2020.3015155
- Neural network radiative transfer for imaging spectroscopy B. Bue et al. 10.5194/amt-12-2567-2019
- Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI J. Strandgren et al. 10.5194/amt-10-4317-2017
- Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements J. Ungermann et al. 10.5194/amt-13-7025-2020
- Probing the Explainability of Neural Network Cloud-Top Pressure Models for LEO and GEO Imagers C. White et al. 10.1175/AIES-D-21-0001.1
- Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne C. Aebi et al. 10.5194/amt-13-907-2020
- Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project V. Grewe et al. 10.3390/aerospace4030034
45 citations as recorded by crossref.
- VIIRS Edition 1 Cloud Properties for CERES, Part 2: Evaluation with CALIPSO C. Yost et al. 10.3390/rs15051349
- Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm D. Miller et al. 10.5194/amt-13-3447-2020
- The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development D. Piontek et al. 10.3390/rs13163112
- Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts B. Gasparini et al. 10.5194/acp-23-15413-2023
- Particle reflectivity and movements in cirrus clouds over Beijing from four years of Ka radar measurements J. Huo et al. 10.1016/j.atmosres.2020.105211
- Seasonal distribution of cirrus cloud characteristics and their rapid descent from polarization lidar measurements at the west coast of India M. Aswini et al. 10.1007/s00704-023-04518-w
- Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks J. Strandgren et al. 10.5194/amt-10-3547-2017
- An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions M. Plu et al. 10.5194/nhess-21-2973-2021
- Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network S. Sun-Mack et al. 10.5194/amt-17-3323-2024
- Cirrus Clouds A. Heymsfield et al. 10.1175/AMSMONOGRAPHS-D-16-0010.1
- Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations M. Segal-Rozenhaimer et al. 10.1016/j.jqsrt.2018.08.030
- A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1 S. Larosa et al. 10.3390/rs15071798
- Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method P. Minnis et al. 10.1002/2015JD024456
- Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks C. White et al. 10.5194/amt-14-3371-2021
- How Well Can Persistent Contrails Be Predicted? K. Gierens et al. 10.3390/aerospace7120169
- Algorithm for Interpreting Light Backscattering Matrices of Cirrus Clouds for the Retrieval of Their Microphysical Parameters V. Shishko et al. 10.1134/S1024856019040134
- How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties J. Mayer et al. 10.5194/amt-17-5161-2024
- Constraining Ice Water Content of Thin Antarctic Cirrus Clouds Using Ground-Based Lidar and Satellite Data S. Alexander & A. Klekociuk 10.1175/JAS-D-20-0251.1
- Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017 J. Huo et al. 10.5194/acp-20-14377-2020
- A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations C. Wang et al. 10.5194/amt-13-2257-2020
- Retrieval of Vertical Profile of Cirrus Cloud Effective Particle Size Using Reflected Line Spectra in 1.38 μm Band Y. Gu et al. 10.1029/2020EA001119
- Cloud and DNI nowcasting with MSG/SEVIRI for the optimized operation of concentrating solar power plants T. Sirch et al. 10.5194/amt-10-409-2017
- Bayesian cloud-top phase determination for Meteosat Second Generation J. Mayer et al. 10.5194/amt-17-4015-2024
- Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking A. Taravat et al. 10.3390/rs70201529
- CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System G. Stephens et al. 10.1175/BAMS-D-16-0324.1
- Neural network cloud top pressure and height for MODIS N. Håkansson et al. 10.5194/amt-11-3177-2018
- 基于神经网络反演中国南海海域透明卷云参数 陆. Lu Wenqiang et al. 10.3788/AOS230605
- A global record of single-layered ice cloud properties and associated radiative heating rate profiles from an A-Train perspective E. Dolinar et al. 10.1007/s00382-019-04682-8
- Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers D. Piontek et al. 10.3390/rs15051247
- The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation D. Piontek et al. 10.3390/rs13163128
- Contrail altitude estimation using GOES-16 ABI data and deep learning V. Meijer et al. 10.5194/amt-17-6145-2024
- An extended lidar-based cirrus cloud retrieval scheme: first application over an Arctic site K. Nakoudi et al. 10.1364/OE.414770
- Deep-Learning-Based Daytime COT Retrieval and Prediction Method Using FY4A AGRI Data F. Xu et al. 10.3390/rs16122136
- Ice water path retrievals from Meteosat-9 using quantile regression neural networks A. Amell et al. 10.5194/amt-15-5701-2022
- Atmospheric Correction Above Clouds for FY-4A AGRI Based on RTTOV Y. Wang et al. 10.1109/TGRS.2024.3494743
- Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization Y. Cheng et al. 10.3390/s24020541
- VADUGS: a neural network for the remote sensing of volcanic ash with MSG/SEVIRI trained with synthetic thermal satellite observations simulated with a radiative transfer model L. Bugliaro et al. 10.5194/nhess-22-1029-2022
- Cloud identification and property retrieval from Himawari-8 infrared measurements via a deep neural network X. Wang et al. 10.1016/j.rse.2022.113026
- ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO C. Voigt et al. 10.1175/BAMS-D-15-00213.1
- CERES MODIS Cloud Product Retrievals for Edition 4—Part II: Comparisons to CloudSat and CALIPSO C. Yost et al. 10.1109/TGRS.2020.3015155
- Neural network radiative transfer for imaging spectroscopy B. Bue et al. 10.5194/amt-12-2567-2019
- Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI J. Strandgren et al. 10.5194/amt-10-4317-2017
- Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements J. Ungermann et al. 10.5194/amt-13-7025-2020
- Probing the Explainability of Neural Network Cloud-Top Pressure Models for LEO and GEO Imagers C. White et al. 10.1175/AIES-D-21-0001.1
- Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne C. Aebi et al. 10.5194/amt-13-907-2020
1 citations as recorded by crossref.
Saved (final revised paper)
Latest update: 13 Dec 2024