Articles | Volume 7, issue 10
Research article
01 Oct 2014
Research article |  | 01 Oct 2014

Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing

S. Kox, L. Bugliaro, and A. Ostler

Abstract. A novel approach for the detection of cirrus clouds and the retrieval of optical thickness and top altitude based on the measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented. Trained with 8 000 000 co-incident measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission the new "cirrus optical properties derived from CALIOP and SEVIRI algorithm during day and night" (COCS) algorithm utilizes a backpropagation neural network to provide accurate measurements of cirrus optical depth τ at λ = 532 nm and top altitude z every 15 min covering almost one-third of the Earth's atmosphere. The retrieved values are validated with independent measurements of CALIOP and the optical thickness derived by an airborne high spectral resolution lidar.