Articles | Volume 8, issue 4
https://doi.org/10.5194/amt-8-1757-2015
https://doi.org/10.5194/amt-8-1757-2015
Research article
 | 
15 Apr 2015
Research article |  | 15 Apr 2015

Bayesian cloud detection for MERIS, AATSR, and their combination

A. Hollstein, J. Fischer, C. Carbajal Henken, and R. Preusker

Abstract. A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.

Download
Short summary
Cloud detection is one of the key components for the exploitation of Earth observation images. We discuss the use of probabilistic algorithms for MERIS and AATSR on-board the ENVISAT satellite. As a new approach, we used an automated search to find the best combination of channels for the algorithm, which led to a number of unusual combinations that have not been used in the past. We show how very small samples of manually classified cloud truth images can be used to set up efficient algorithms.