Articles | Volume 8, issue 4
Research article
15 Apr 2015
Research article |  | 15 Apr 2015

Bayesian cloud detection for MERIS, AATSR, and their combination

A. Hollstein, J. Fischer, C. Carbajal Henken, and R. Preusker

Related authors

Retrieving aerosol height from the oxygen A band: a fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity
A. Hollstein and J. Fischer
Atmos. Meas. Tech., 7, 1429–1441,,, 2014
Fast reconstruction of hyperspectral radiative transfer simulations by using small spectral subsets: application to the oxygen A band
A. Hollstein and R. Lindstrot
Atmos. Meas. Tech., 7, 599–607,,, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888,,, 2023
Short summary
Cloud mask algorithm from the EarthCARE Multi-Spectral Imager: the M-CM products
Anja Hünerbein, Sebastian Bley, Stefan Horn, Hartwig Deneke, and Andi Walther
Atmos. Meas. Tech., 16, 2821–2836,,, 2023
Short summary
Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331,,, 2023
Short summary
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166,,, 2023
Short summary
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106,,, 2023
Short summary

Cited articles

Carbajal Henken, C. K., Lindstrot, R., Preusker, R., and Fischer, J.: FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations, Atmos. Meas. Tech. Discuss., 7, 4909–4947,, 2014.
Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., Engel, W., Frerick, J., and Nieke, J.: SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space, J. Mod. Optic., 57, 1815–1830,, 2010.
English, S., Eyre, J., and Smith, J.: A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction, Q. J. Roy. Meteor. Soc., 125, 2359–2378, 1999.
Fomferra, N. and Brockmann, C.: Beam-the ENVISAT MERIS and AATSR toolbox, in: MERIS (A)ATSR Workshop 2005, 597, p. 13, 2005.
Gómez-Chova, L., Camps-Valls, G., Amorós-López, J., Guanter, L., Alonso, L., Calpe, J., and Moreno, J.: New cloud detection algorithm for multispectral and hyperspectral images: Application to ENVISAT/MERIS and PROBA/CHRIS sensors, in: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2757–2760, 2006.
Short summary
Cloud detection is one of the key components for the exploitation of Earth observation images. We discuss the use of probabilistic algorithms for MERIS and AATSR on-board the ENVISAT satellite. As a new approach, we used an automated search to find the best combination of channels for the algorithm, which led to a number of unusual combinations that have not been used in the past. We show how very small samples of manually classified cloud truth images can be used to set up efficient algorithms.