Articles | Volume 8, issue 4
https://doi.org/10.5194/amt-8-1757-2015
https://doi.org/10.5194/amt-8-1757-2015
Research article
 | 
15 Apr 2015
Research article |  | 15 Apr 2015

Bayesian cloud detection for MERIS, AATSR, and their combination

A. Hollstein, J. Fischer, C. Carbajal Henken, and R. Preusker

Related authors

Retrieving aerosol height from the oxygen A band: a fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity
A. Hollstein and J. Fischer
Atmos. Meas. Tech., 7, 1429–1441, https://doi.org/10.5194/amt-7-1429-2014,https://doi.org/10.5194/amt-7-1429-2014, 2014
Fast reconstruction of hyperspectral radiative transfer simulations by using small spectral subsets: application to the oxygen A band
A. Hollstein and R. Lindstrot
Atmos. Meas. Tech., 7, 599–607, https://doi.org/10.5194/amt-7-599-2014,https://doi.org/10.5194/amt-7-599-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary

Cited articles

Carbajal Henken, C. K., Lindstrot, R., Preusker, R., and Fischer, J.: FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations, Atmos. Meas. Tech. Discuss., 7, 4909–4947, https://doi.org/10.5194/amtd-7-4909-2014, 2014.
Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., Engel, W., Frerick, J., and Nieke, J.: SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space, J. Mod. Optic., 57, 1815–1830, https://doi.org/10.1080/09500340.2010.503010, 2010.
English, S., Eyre, J., and Smith, J.: A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction, Q. J. Roy. Meteor. Soc., 125, 2359–2378, 1999.
Fomferra, N. and Brockmann, C.: Beam-the ENVISAT MERIS and AATSR toolbox, in: MERIS (A)ATSR Workshop 2005, 597, p. 13, 2005.
Gómez-Chova, L., Camps-Valls, G., Amorós-López, J., Guanter, L., Alonso, L., Calpe, J., and Moreno, J.: New cloud detection algorithm for multispectral and hyperspectral images: Application to ENVISAT/MERIS and PROBA/CHRIS sensors, in: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2757–2760, 2006.
Download
Short summary
Cloud detection is one of the key components for the exploitation of Earth observation images. We discuss the use of probabilistic algorithms for MERIS and AATSR on-board the ENVISAT satellite. As a new approach, we used an automated search to find the best combination of channels for the algorithm, which led to a number of unusual combinations that have not been used in the past. We show how very small samples of manually classified cloud truth images can be used to set up efficient algorithms.