Articles | Volume 8, issue 1
https://doi.org/10.5194/amt-8-281-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-281-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations
SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
O. P. Hasekamp
SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
G. van Harten
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
J. H. H. Rietjens
SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
J. M. Smit
SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
F. Snik
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
J. S. Henzing
Netherlands Organisation for Applied Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
J. de Boer
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
C. U. Keller
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
H. Volten
National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
Viewed
Total article views: 4,323 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Sep 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,485 | 1,554 | 284 | 4,323 | 149 | 137 |
- HTML: 2,485
- PDF: 1,554
- XML: 284
- Total: 4,323
- BibTeX: 149
- EndNote: 137
Total article views: 3,339 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Jan 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,886 | 1,191 | 262 | 3,339 | 135 | 127 |
- HTML: 1,886
- PDF: 1,191
- XML: 262
- Total: 3,339
- BibTeX: 135
- EndNote: 127
Total article views: 984 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Sep 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
599 | 363 | 22 | 984 | 14 | 10 |
- HTML: 599
- PDF: 363
- XML: 22
- Total: 984
- BibTeX: 14
- EndNote: 10
Cited
44 citations as recorded by crossref.
- Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models M. Gao et al. 10.5194/amt-16-5863-2023
- An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing P. Werdell et al. 10.1016/j.pocean.2018.01.001
- The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign K. Knobelspiesse et al. 10.5194/essd-12-2183-2020
- A Machine Learning Approach to Derive Aerosol Properties from All-Sky Camera Imagery F. Scarlatti et al. 10.3390/rs15061676
- Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier A. Kokhanovsky et al. 10.1016/j.earscirev.2015.01.012
- Reduction of the effects of angle errors for a channeled spectropolarimeter X. Ju et al. 10.1364/AO.56.009156
- Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives O. Dubovik et al. 10.1016/j.jqsrt.2018.11.024
- A robust and flexible satellite aerosol retrieval algorithm for multi-angle polarimetric measurements with physics-informed deep learning method M. Tao et al. 10.1016/j.rse.2023.113763
- Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter A. Di Noia et al. 10.5194/amt-10-4235-2017
- Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery C. Niu et al. 10.1016/j.envpol.2021.117534
- Polarization Lidar: Principles and Applications X. Liu et al. 10.3390/photonics10101118
- Retrieval of aerosol properties from ground-based polarimetric sky-radiance measurements under cloudy conditions H. Grob et al. 10.1016/j.jqsrt.2019.02.025
- Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements C. Fan et al. 10.3390/rs11232877
- Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation F. Stap et al. 10.1002/2016JD024787
- Interference correction for polarization spectral intensity modulation (PSIM) with spatial heterodyne spectroscopy (SHS) S. Li et al. 10.1080/10739149.2024.2375243
- An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing A. Doicu et al. 10.3390/rs13245061
- A method for controlling the reliability of ground-based polarimetric measurements of the atmosphere O. Ovsak 10.15407/kfnt2024.04.078
- Measurement of polarization-sensitive characteristic of scientific CCD detector T. Liang et al. 10.1016/j.ijleo.2020.165593
- Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model M. Gao et al. 10.5194/amt-14-4083-2021
- Spaceborne Measurements of Formic and Acetic Acids: A Global View of the Regional Sources B. Franco et al. 10.1029/2019GL086239
- Identification of new particle formation events with deep learning J. Joutsensaari et al. 10.5194/acp-18-9597-2018
- Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach A. Di Noia et al. 10.5194/amt-12-1697-2019
- An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O<sub>2</sub> − O<sub>2</sub> spectral band using a neural network approach J. Chimot et al. 10.5194/amt-10-783-2017
- Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm D. Miller et al. 10.5194/amt-13-3447-2020
- Adaptive Data Screening for Multi-Angle Polarimetric Aerosol and Ocean Color Remote Sensing Accelerated by Deep Learning M. Gao et al. 10.3389/frsen.2021.757832
- Retrieval of aerosol properties from in situ, multi-angle light scattering measurements using invertible neural networks R. Boiger et al. 10.1016/j.jaerosci.2022.105977
- Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm G. Fu et al. 10.5194/amt-13-553-2020
- A Method for Controlling the Reliability of On-Ground Polarimetric Measurements of the Atmosphere O. Ovsak 10.3103/S0884591324040044
- Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks L. Rao et al. 10.1109/JSTARS.2022.3196843
- A neural network aerosol-typing algorithm based on lidar data D. Nicolae et al. 10.5194/acp-18-14511-2018
- The polarized Sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing H. Grob et al. 10.5194/amt-13-239-2020
- An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran M. Garajeh et al. 10.1016/j.scitotenv.2021.146253
- Predicting Aerosol Extinction Coefficient With LiDAR Data Based on Deep Belief Network J. Chang et al. 10.1109/LGRS.2021.3102677
- A physical knowledge-based machine learning method for near-real-time dust aerosol properties retrieval from the Himawari-8 satellite data J. Li et al. 10.1016/j.atmosenv.2022.119098
- Cloud detection from multi-angular polarimetric satellite measurements using a neural network ensemble approach Z. Yuan et al. 10.5194/amt-17-2595-2024
- Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations M. Segal-Rozenhaimer et al. 10.1016/j.jqsrt.2018.08.030
- Feature Extraction and Attribute Recognition of Aerosol Particles from In Situ Light-Scattering Measurements Based on EMD-ICA Combined LSTM Model H. Zhao et al. 10.3390/atmos15121441
- Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes F. Stap et al. 10.1016/j.jqsrt.2015.10.008
- Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN) M. Segal-Rozenhaimer et al. 10.1016/j.rse.2019.111446
- Application of an improved artificial bee colony algorithm to inverse problem of aerosol optical constants from spectral measurement data Z. He et al. 10.1016/j.ijleo.2017.06.038
- A review of advances in the retrieval of aerosol properties by remote sensing multi-angle technology Y. Si et al. 10.1016/j.atmosenv.2020.117928
- Aerosols in OCO-2/GOSAT retrievals of XCO2: An information content and error analysis S. Sanghavi et al. 10.1016/j.rse.2020.112053
- Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination F. Stap et al. 10.5194/amt-8-1287-2015
- Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument G. van Harten et al. 10.5194/amt-7-4341-2014
42 citations as recorded by crossref.
- Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models M. Gao et al. 10.5194/amt-16-5863-2023
- An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing P. Werdell et al. 10.1016/j.pocean.2018.01.001
- The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign K. Knobelspiesse et al. 10.5194/essd-12-2183-2020
- A Machine Learning Approach to Derive Aerosol Properties from All-Sky Camera Imagery F. Scarlatti et al. 10.3390/rs15061676
- Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier A. Kokhanovsky et al. 10.1016/j.earscirev.2015.01.012
- Reduction of the effects of angle errors for a channeled spectropolarimeter X. Ju et al. 10.1364/AO.56.009156
- Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives O. Dubovik et al. 10.1016/j.jqsrt.2018.11.024
- A robust and flexible satellite aerosol retrieval algorithm for multi-angle polarimetric measurements with physics-informed deep learning method M. Tao et al. 10.1016/j.rse.2023.113763
- Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter A. Di Noia et al. 10.5194/amt-10-4235-2017
- Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery C. Niu et al. 10.1016/j.envpol.2021.117534
- Polarization Lidar: Principles and Applications X. Liu et al. 10.3390/photonics10101118
- Retrieval of aerosol properties from ground-based polarimetric sky-radiance measurements under cloudy conditions H. Grob et al. 10.1016/j.jqsrt.2019.02.025
- Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements C. Fan et al. 10.3390/rs11232877
- Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation F. Stap et al. 10.1002/2016JD024787
- Interference correction for polarization spectral intensity modulation (PSIM) with spatial heterodyne spectroscopy (SHS) S. Li et al. 10.1080/10739149.2024.2375243
- An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing A. Doicu et al. 10.3390/rs13245061
- A method for controlling the reliability of ground-based polarimetric measurements of the atmosphere O. Ovsak 10.15407/kfnt2024.04.078
- Measurement of polarization-sensitive characteristic of scientific CCD detector T. Liang et al. 10.1016/j.ijleo.2020.165593
- Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model M. Gao et al. 10.5194/amt-14-4083-2021
- Spaceborne Measurements of Formic and Acetic Acids: A Global View of the Regional Sources B. Franco et al. 10.1029/2019GL086239
- Identification of new particle formation events with deep learning J. Joutsensaari et al. 10.5194/acp-18-9597-2018
- Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach A. Di Noia et al. 10.5194/amt-12-1697-2019
- An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O<sub>2</sub> − O<sub>2</sub> spectral band using a neural network approach J. Chimot et al. 10.5194/amt-10-783-2017
- Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm D. Miller et al. 10.5194/amt-13-3447-2020
- Adaptive Data Screening for Multi-Angle Polarimetric Aerosol and Ocean Color Remote Sensing Accelerated by Deep Learning M. Gao et al. 10.3389/frsen.2021.757832
- Retrieval of aerosol properties from in situ, multi-angle light scattering measurements using invertible neural networks R. Boiger et al. 10.1016/j.jaerosci.2022.105977
- Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm G. Fu et al. 10.5194/amt-13-553-2020
- A Method for Controlling the Reliability of On-Ground Polarimetric Measurements of the Atmosphere O. Ovsak 10.3103/S0884591324040044
- Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks L. Rao et al. 10.1109/JSTARS.2022.3196843
- A neural network aerosol-typing algorithm based on lidar data D. Nicolae et al. 10.5194/acp-18-14511-2018
- The polarized Sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing H. Grob et al. 10.5194/amt-13-239-2020
- An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran M. Garajeh et al. 10.1016/j.scitotenv.2021.146253
- Predicting Aerosol Extinction Coefficient With LiDAR Data Based on Deep Belief Network J. Chang et al. 10.1109/LGRS.2021.3102677
- A physical knowledge-based machine learning method for near-real-time dust aerosol properties retrieval from the Himawari-8 satellite data J. Li et al. 10.1016/j.atmosenv.2022.119098
- Cloud detection from multi-angular polarimetric satellite measurements using a neural network ensemble approach Z. Yuan et al. 10.5194/amt-17-2595-2024
- Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations M. Segal-Rozenhaimer et al. 10.1016/j.jqsrt.2018.08.030
- Feature Extraction and Attribute Recognition of Aerosol Particles from In Situ Light-Scattering Measurements Based on EMD-ICA Combined LSTM Model H. Zhao et al. 10.3390/atmos15121441
- Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes F. Stap et al. 10.1016/j.jqsrt.2015.10.008
- Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN) M. Segal-Rozenhaimer et al. 10.1016/j.rse.2019.111446
- Application of an improved artificial bee colony algorithm to inverse problem of aerosol optical constants from spectral measurement data Z. He et al. 10.1016/j.ijleo.2017.06.038
- A review of advances in the retrieval of aerosol properties by remote sensing multi-angle technology Y. Si et al. 10.1016/j.atmosenv.2020.117928
- Aerosols in OCO-2/GOSAT retrievals of XCO2: An information content and error analysis S. Sanghavi et al. 10.1016/j.rse.2020.112053
2 citations as recorded by crossref.
Saved (final revised paper)
Saved (final revised paper)
Saved (preprint)
Latest update: 13 Dec 2024
Short summary
A neural network algorithm has been developed to retrieve aerosol microphysical parameters from ground-based measurements of skylight intensity and polarization. The neural network is capable of producing accurate estimates of aerosol optical thicknesses, effective radii and refractive index. In addition, it is shown that the use of the neural retrievals as initial guess for an iterative retrieval algorithm results in improved convergence and retrieval accuracy.
A neural network algorithm has been developed to retrieve aerosol microphysical parameters from...