Research article 14 Jan 2015
Research article | 14 Jan 2015
Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations
A. Di Noia et al.
Related authors
Michael Buchwitz, Maximilian Reuter, Stefan Noël, Klaus Bramstedt, Oliver Schneising, Michael Hilker, Blanca Fuentes Andrade, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hartmut Boesch, Lianghai Wu, Jochen Landgraf, Ilse Aben, Christian Retscher, Christopher W. O'Dell, and David Crisp
Atmos. Meas. Tech., 14, 2141–2166, https://doi.org/10.5194/amt-14-2141-2021, https://doi.org/10.5194/amt-14-2141-2021, 2021
Short summary
Short summary
The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large parts of the world. We have used a small ensemble of satellite retrievals of column-averaged CO2 (XCO2) to find out if a regional-scale reduction of atmospheric CO2 can be detected from space. We focus on East China and show that it is challenging to reliably detect and to accurately quantify the emission reduction, which only results in regional XCO2 reductions of about 0.1–0.2 ppm.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-453, https://doi.org/10.5194/amt-2020-453, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We present first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm.
Comparisons of the GOSAT FOCAL product with other data reveal a long-term agreement within about 1 ppm over one decade, differences in seasonal variations of about 0.5 ppm and a mean regional bias to ground based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm.
GOSAT-2 FOCAL data are considered to be preliminary only, but first comparisons show that they compare well with the GOSAT FOCAL results.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Antonio Di Noia, Otto P. Hasekamp, Bastiaan van Diedenhoven, and Zhibo Zhang
Atmos. Meas. Tech., 12, 1697–1716, https://doi.org/10.5194/amt-12-1697-2019, https://doi.org/10.5194/amt-12-1697-2019, 2019
Short summary
Short summary
We present a neural network algorithm for the retrieval of cloud physical properties from multi-angle polarimetric measurements. We have trained the algorithm on a large dataset of synthetic measurements and applied it to a year of POLDER-3 data. A comparison against MODIS cloud products reveals that our algorithm is capable of performing cloud property retrievals on a global scale and possibly improves the estimates of cloud effective radius over land with respect to existing POLDER-3 products.
Antonio Di Noia, Otto P. Hasekamp, Lianghai Wu, Bastiaan van Diedenhoven, Brian Cairns, and John E. Yorks
Atmos. Meas. Tech., 10, 4235–4252, https://doi.org/10.5194/amt-10-4235-2017, https://doi.org/10.5194/amt-10-4235-2017, 2017
Short summary
Short summary
In this paper an algorithm for the retrieval of aerosol properties from NASA Research Scanning Polarimeter (RSP) data is presented. An artificial neural network is used to produce a first estimate of the aerosol properties, which is then improved using an iterative retrieval scheme based on Phillips–Tikhonov regularization. Using the neural network retrievals as a first guess for the Phillips–Tikhonov improved the retrieval convergence, confirming results previously found on ground-based data.
G. van Harten, J. de Boer, J. H. H. Rietjens, A. Di Noia, F. Snik, H. Volten, J. M. Smit, O. P. Hasekamp, J. S. Henzing, and C. U. Keller
Atmos. Meas. Tech., 7, 4341–4351, https://doi.org/10.5194/amt-7-4341-2014, https://doi.org/10.5194/amt-7-4341-2014, 2014
Michael Buchwitz, Maximilian Reuter, Stefan Noël, Klaus Bramstedt, Oliver Schneising, Michael Hilker, Blanca Fuentes Andrade, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hartmut Boesch, Lianghai Wu, Jochen Landgraf, Ilse Aben, Christian Retscher, Christopher W. O'Dell, and David Crisp
Atmos. Meas. Tech., 14, 2141–2166, https://doi.org/10.5194/amt-14-2141-2021, https://doi.org/10.5194/amt-14-2141-2021, 2021
Short summary
Short summary
The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large parts of the world. We have used a small ensemble of satellite retrievals of column-averaged CO2 (XCO2) to find out if a regional-scale reduction of atmospheric CO2 can be detected from space. We focus on East China and show that it is challenging to reliably detect and to accurately quantify the emission reduction, which only results in regional XCO2 reductions of about 0.1–0.2 ppm.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-453, https://doi.org/10.5194/amt-2020-453, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We present first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm.
Comparisons of the GOSAT FOCAL product with other data reveal a long-term agreement within about 1 ppm over one decade, differences in seasonal variations of about 0.5 ppm and a mean regional bias to ground based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm.
GOSAT-2 FOCAL data are considered to be preliminary only, but first comparisons show that they compare well with the GOSAT FOCAL results.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Antonio Di Noia, Otto P. Hasekamp, Bastiaan van Diedenhoven, and Zhibo Zhang
Atmos. Meas. Tech., 12, 1697–1716, https://doi.org/10.5194/amt-12-1697-2019, https://doi.org/10.5194/amt-12-1697-2019, 2019
Short summary
Short summary
We present a neural network algorithm for the retrieval of cloud physical properties from multi-angle polarimetric measurements. We have trained the algorithm on a large dataset of synthetic measurements and applied it to a year of POLDER-3 data. A comparison against MODIS cloud products reveals that our algorithm is capable of performing cloud property retrievals on a global scale and possibly improves the estimates of cloud effective radius over land with respect to existing POLDER-3 products.
Antonio Di Noia, Otto P. Hasekamp, Lianghai Wu, Bastiaan van Diedenhoven, Brian Cairns, and John E. Yorks
Atmos. Meas. Tech., 10, 4235–4252, https://doi.org/10.5194/amt-10-4235-2017, https://doi.org/10.5194/amt-10-4235-2017, 2017
Short summary
Short summary
In this paper an algorithm for the retrieval of aerosol properties from NASA Research Scanning Polarimeter (RSP) data is presented. An artificial neural network is used to produce a first estimate of the aerosol properties, which is then improved using an iterative retrieval scheme based on Phillips–Tikhonov regularization. Using the neural network retrievals as a first guess for the Phillips–Tikhonov improved the retrieval convergence, confirming results previously found on ground-based data.
Augustinus J. C. Berkhout, Daan P. J. Swart, Hester Volten, Lou F. L. Gast, Marty Haaima, Hans Verboom, Guus Stefess, Theo Hafkenscheid, and Ronald Hoogerbrugge
Atmos. Meas. Tech., 10, 4099–4120, https://doi.org/10.5194/amt-10-4099-2017, https://doi.org/10.5194/amt-10-4099-2017, 2017
Short summary
Short summary
One of the gases polluting the air that we measure in the Dutch National Air Quality Monitoring Network is ammonia. We replaced the ageing instruments that we used for the past 20 years by the miniDOAS, an instrument that uses ultraviolet light to measure ammonia. We operated the old and new instruments side by side for more than a year and found them to agree well. The miniDOAS measures faster than the old instrument; this will give us more insight in how ammonia behaves in the atmosphere.
Haili Hu, Otto Hasekamp, André Butz, André Galli, Jochen Landgraf, Joost Aan de Brugh, Tobias Borsdorff, Remco Scheepmaker, and Ilse Aben
Atmos. Meas. Tech., 9, 5423–5440, https://doi.org/10.5194/amt-9-5423-2016, https://doi.org/10.5194/amt-9-5423-2016, 2016
Short summary
Short summary
In 2017, the TROPOMI spectrometer will be launched on board the Sentinel 5 Precursor satellite. It will deliver, among other things, daily global measurements of methane as part of the Copernicus atmospheric services.
In this paper, we present the algorithm that is used for operational data processing of the methane product from TROPOMI measurements of the shortwave and near-infrared spectral range, and we discuss its performance using realistic simulated measurements.
Remco A. Scheepmaker, Joost aan de Brugh, Haili Hu, Tobias Borsdorff, Christian Frankenberg, Camille Risi, Otto Hasekamp, Ilse Aben, and Jochen Landgraf
Atmos. Meas. Tech., 9, 3921–3937, https://doi.org/10.5194/amt-9-3921-2016, https://doi.org/10.5194/amt-9-3921-2016, 2016
Short summary
Short summary
We have developed an algorithm to measure HDO (heavy water) in the atmosphere using the TROPOMI satellite instrument, scheduled for launch in 2016. Giving an insight in the history of water vapour, these measurements will help to better understand the water cycle and its role in climate change. We use realistic measurement simulations to describe the performance of the algorithm, and show that TROPOMI will greatly improve and extend the HDO datasets from the previous SCIAMACHY and GOSAT missions.
A. Butz, J. Orphal, R. Checa-Garcia, F. Friedl-Vallon, T. von Clarmann, H. Bovensmann, O. Hasekamp, J. Landgraf, T. Knigge, D. Weise, O. Sqalli-Houssini, and D. Kemper
Atmos. Meas. Tech., 8, 4719–4734, https://doi.org/10.5194/amt-8-4719-2015, https://doi.org/10.5194/amt-8-4719-2015, 2015
Short summary
Short summary
The Geostationary Emission Explorer for Europe (G3E) is a mission concept for a greenhouse gas sounder in geostationary orbit. It is designed to provide column-average concentrations of carbon dioxide, methane, and carbon monoxide with high spatial and 2-hour temporal resolution throughout the central European continent. The prospective data density, precision and accuracy suggest G3E as a key component of a future carbon emission monitoring system.
A. Wassmann, T. Borsdorff, J. M. J. aan de Brugh, O. P. Hasekamp, I. Aben, and J. Landgraf
Atmos. Meas. Tech., 8, 4429–4451, https://doi.org/10.5194/amt-8-4429-2015, https://doi.org/10.5194/amt-8-4429-2015, 2015
Short summary
Short summary
We present an extensive sensitivity study of retrieved total ozone columns from clear sky Global Ozone Monitoring Experiment 2 (GOME-2) measurements between 325 and 335nm which are corrected for instrument degradation. We address the choice of the scaling ozone profile, the choice of the radiative transfer solver, and the approximation of Earth's sphericity. Finally, we study the effect of instrument degradation on the retrieved total ozone columns for the first 4 years of the mission.
D. P. Donovan, H. Klein Baltink, J. S. Henzing, S. R. de Roode, and A. P. Siebesma
Atmos. Meas. Tech., 8, 237–266, https://doi.org/10.5194/amt-8-237-2015, https://doi.org/10.5194/amt-8-237-2015, 2015
Short summary
Short summary
Stratocumulus clouds are important for weather and climate. They contain relatively little water but are optically thick enough to turn sunny days to grey and globally they have a strong impact on the Earth's energy budget. A new lidar (laser-radar) technique has been developed that is well suited for remotely measuring stratocumulus properties in the important cloud-based region. The technique can supply information that is difficult or impossible for other remote-sensing methods to provide.
M. Alexe, P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, C. Sweeney, S. C. Wofsy, and E. A. Kort
Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, https://doi.org/10.5194/acp-15-113-2015, 2015
G. van Harten, J. de Boer, J. H. H. Rietjens, A. Di Noia, F. Snik, H. Volten, J. M. Smit, O. P. Hasekamp, J. S. Henzing, and C. U. Keller
Atmos. Meas. Tech., 7, 4341–4351, https://doi.org/10.5194/amt-7-4341-2014, https://doi.org/10.5194/amt-7-4341-2014, 2014
J. M. Krijger, R. Snel, G. van Harten, J. H. H. Rietjens, and I. Aben
Atmos. Meas. Tech., 7, 3387–3398, https://doi.org/10.5194/amt-7-3387-2014, https://doi.org/10.5194/amt-7-3387-2014, 2014
S. Massart, A. Agusti-Panareda, I. Aben, A. Butz, F. Chevallier, C. Crevoisier, R. Engelen, C. Frankenberg, and O. Hasekamp
Atmos. Chem. Phys., 14, 6139–6158, https://doi.org/10.5194/acp-14-6139-2014, https://doi.org/10.5194/acp-14-6139-2014, 2014
A. J. van Beelen, G. J. H. Roelofs, O. P. Hasekamp, J. S. Henzing, and T. Röckmann
Atmos. Chem. Phys., 14, 5969–5987, https://doi.org/10.5194/acp-14-5969-2014, https://doi.org/10.5194/acp-14-5969-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
A. Galli, S. Guerlet, A. Butz, I. Aben, H. Suto, A. Kuze, N. M. Deutscher, J. Notholt, D. Wunch, P. O. Wennberg, D. W. T. Griffith, O. Hasekamp, and J. Landgraf
Atmos. Meas. Tech., 7, 1105–1119, https://doi.org/10.5194/amt-7-1105-2014, https://doi.org/10.5194/amt-7-1105-2014, 2014
T. Borsdorff, O. P. Hasekamp, A. Wassmann, and J. Landgraf
Atmos. Meas. Tech., 7, 523–535, https://doi.org/10.5194/amt-7-523-2014, https://doi.org/10.5194/amt-7-523-2014, 2014
A. Butz, S. Guerlet, O. P. Hasekamp, A. Kuze, and H. Suto
Atmos. Meas. Tech., 6, 2509–2520, https://doi.org/10.5194/amt-6-2509-2013, https://doi.org/10.5194/amt-6-2509-2013, 2013
S. Basu, S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. Langenfelds, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy
Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, https://doi.org/10.5194/acp-13-8695-2013, 2013
M. Reuter, H. Bösch, H. Bovensmann, A. Bril, M. Buchwitz, A. Butz, J. P. Burrows, C. W. O'Dell, S. Guerlet, O. Hasekamp, J. Heymann, N. Kikuchi, S. Oshchepkov, R. Parker, S. Pfeifer, O. Schneising, T. Yokota, and Y. Yoshida
Atmos. Chem. Phys., 13, 1771–1780, https://doi.org/10.5194/acp-13-1771-2013, https://doi.org/10.5194/acp-13-1771-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: applications to radiometer, lidar and radiosonde observations
Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths
Relative sky radiance from multi-exposure all-sky camera images
An uncertainty-based protocol for the setup and measurement of soot–black carbon emissions from gas flares using sky-LOSA
A new measurement approach for validating satellite-based above-cloud aerosol optical depth
OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm
Simulated reflectance above snow constrained by airborne measurements of solar radiation: implications for the snow grain morphology in the Arctic
ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set
Optimal use of Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals
Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer
A Dark Target research aerosol algorithm for MODIS observations over eastern China: Increasing coverage while maintaining accuracy at high aerosol loading
Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI
Analysis of simultaneous aerosol and ocean glint retrieval using multi-angle observations
Correction of a lunar-irradiance model for aerosol optical depth retrieval and comparison with a star photometer
Quantitative comparison of measured and simulated O4 absorptions for one day with extremely low aerosol load over the tropical Atlantic
Improving GOES Advanced Baseline Imager (ABI) aerosol optical depth (AOD) retrievals using an empirical bias correction algorithm
Stratospheric aerosol extinction profiles from SCIAMACHY solar occultation
A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differential absorption spectroscopy measurements
Leveraging spatial textures, through machine learning, to identify aerosols and distinct cloud types from multispectral observations
Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017
Reducing cloud contamination in AOD measurements
Model Enforced Post-Process Correction of Satellite Aerosol Retrievals
Aerosol optical properties as observed from an ultralight aircraft over the Strait of Gibraltar
Evaluation of a method for converting Stratospheric Aerosol and Gas Experiment (SAGE) extinction coefficients to backscatter coefficients for intercomparison with lidar observations
Inversion of multiangular polarimetric measurements from the ACEPOL campaign: an application of improving aerosol property and hyperspectral ocean color retrievals
Improved water vapour retrieval from AMSU-B and MHS in the Arctic
The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements
A new lidar inversion method using a surface reference target applied to the backscattering coefficient and lidar ratio retrievals of a fog-oil plume at short range
A multi-axis differential optical absorption spectroscopy aerosol profile retrieval algorithm for high-altitude measurements: application to measurements at Schneefernerhaus (UFS), Germany
Explicit and consistent aerosol correction for visible wavelength satellite cloud and nitrogen dioxide retrievals based on optical properties from a global aerosol analysis
The potential of elastic and polarization lidars to retrieve extinction profiles
Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product
Retrieval of gridded aerosol direct radiative forcing based on multiplatform datasets
Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters
A neural network radiative transfer model approach applied to the Tropospheric Monitoring Instrument aerosol height algorithm
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations
Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation
CALIPSO level 3 stratospheric aerosol profile product: version 1.00 algorithm description and initial assessment
Neural network for aerosol retrieval from hyperspectral imagery
Unified quantitative observation of coexisting volcanic sulfur dioxide and sulfate aerosols using ground-based Fourier transform infrared spectroscopy
Aerosol direct radiative effect over clouds from a synergy of Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances
A Tale of Two Dust Storms: analysis of a complex dust event in the Middle East
Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis
3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data: impact of wavelength choice
Year-round stratospheric aerosol backscatter ratios calculated from lidar measurements above northern Norway
Inversion of multiangular polarimetric measurements over open and coastal ocean waters: a joint retrieval algorithm for aerosol and water-leaving radiance properties
Anton Lopatin, Oleg Dubovik, David Fuertes, Georgiy Stenchikov, Tatyana Lapyonok, Igor Veselovskii, Frank G. Wienhold, Illia Shevchenko, Qiaoyun Hu, and Sagar Parajuli
Atmos. Meas. Tech., 14, 2575–2614, https://doi.org/10.5194/amt-14-2575-2021, https://doi.org/10.5194/amt-14-2575-2021, 2021
Short summary
Short summary
The article presents novelties in characterizing fine particles suspended in the air by means of combining various measurements that observe light propagation in atmosphere. Several non-coincident observations (some of which require sunlight, while others work only at night) could be united under the assumption that aerosol properties do not change drastically at nighttime. It also proposes how to describe particles' composition in a simplified manner that uses new types of observations.
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021, https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Short summary
In this paper, we describe a new method for calculating the size of naturally occurring droplets (aerosols) made mostly of sulfuric acid and water that can be found roughly at 20 km altitude in the atmosphere. We use data from the instrument SAGE III/ISS that is mounted on the International Space Station. We show that our method works well, and that the size parameters we calculate are reasonable and can be a valuable addition for a better understanding of aerosols and their effect on climate.
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021, https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
Short summary
This paper presents a new technique to exploit the potential of all-sky cameras. The sky radiance at three effective wavelengths is calculated and compared with alternative measurements and simulated data. The proposed method will be useful for the retrieval of aerosol and cloud properties.
Bradley M. Conrad and Matthew R. Johnson
Atmos. Meas. Tech., 14, 1573–1591, https://doi.org/10.5194/amt-14-1573-2021, https://doi.org/10.5194/amt-14-1573-2021, 2021
Short summary
Short summary
A general uncertainty analysis (GUA) is performed for the sky-LOSA technique used to remotely measure soot emissions from gas flares. GUA data are compiled in an open-source software tool to help sky-LOSA users select critical setup and acquisition parameters while giving quantitative visual feedback on anticipated uncertainties for a specific measurement. The software tool enables easy acquisition of optimal measurement data, significantly increasing the accessibility of the sky-LOSA technique.
Charles K. Gatebe, Hiren Jethva, Ritesh Gautam, Rajesh Poudyal, and Tamás Várnai
Atmos. Meas. Tech., 14, 1405–1423, https://doi.org/10.5194/amt-14-1405-2021, https://doi.org/10.5194/amt-14-1405-2021, 2021
Short summary
Short summary
The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is very challenging, partly because clouds and cloud-related processes significantly modify the aerosol properties and the 3D radiative effects. This study shows simultaneous retrieval of above-cloud aerosol optical depth and aerosol-corrected cloud optical depth from airborne measurements, thereby demonstrating a novel approach for assessing satellite retrievals of aerosols above clouds.
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Short summary
This work describes the newly released OMPS LP aerosol extinction profile multi-wavelength Version 2.0 algorithm and dataset. It is shown that the V2.0 aerosols exhibit significant improvements in OMPS LP retrieval performance in the Southern Hemisphere and at lower altitudes. The new product is compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies.
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021, https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
Short summary
In this work, we study retrieval of snow grain morphologies and their impact on the reflectance in a coupled snow–atmosphere system. We present a sensitivity study to highlight the importance of having adequate information about snow and atmosphere. A novel two-stage algorithm for retrieving the size and shape of snow grains is presented. The reflectance simulation results are compared to that of airborne measurements; high correlations of 0.98 at IR and 0.88–0.98 at VIS are achieved.
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021, https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Short summary
We present the development of the MIDAS (ModIs Dust AeroSol) data set, providing daily dust optical depth (DOD; 550 nm) at a global scale and fine spatial resolution (0.1° x 0.1°) over a 15-year period (2003–2017). It has been developed via the synergy of MODIS-Aqua and MERRA-2 data, while CALIOP and AERONET retrievals are used for its assessment. MIDAS upgrades existing dust observational capabilities, and it is suitable for dust climatological studies, model evaluation, and data assimilation.
Rei Kudo, Henri Diémoz, Victor Estellés, Monica Campanelli, Masahiro Momoi, Franco Marenco, Claire L. Ryder, Osamu Ijima, Akihiro Uchiyama, Kouichi Nakashima, Akihiro Yamazaki, Ryoji Nagasawa, Nozomu Ohkawara, and Haruma Ishida
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-486, https://doi.org/10.5194/amt-2020-486, 2020
Revised manuscript accepted for AMT
Jae-Sik Min, Moon-Soo Park, Jung-Hoon Chae, and Minsoo Kang
Atmos. Meas. Tech., 13, 6965–6987, https://doi.org/10.5194/amt-13-6965-2020, https://doi.org/10.5194/amt-13-6965-2020, 2020
Short summary
Short summary
An algorithm for an integrated system for ABLH estimation (ISABLE) was developed and applied to the vertical profile data obtained by a ceilometer and a microwave radiometer in Seoul city, Korea. The ISABLE algorithm finds an optimal ABLH through the post-processing including k-means clustering and density-based spatial clustering of applications with noise (DBSCAN) techniques. The ISABLE ABLH exhibited better performance than those obtained by most conventional methods.
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-450, https://doi.org/10.5194/amt-2020-450, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Due to fast industrialization and development, China has been experiencing haze pollution episodes with both high frequencies and severity over the last three decades. This study improve the accuracy and data coverage of measured aerosol from satellites, which help quantify, characterize and understand the impact of the haze phenomena over the entire East Asia region.
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Short summary
We investigated the influence of clouds on the Absorbing Aerosol Index (AAI), an indicator of the presence of small particles in the atmosphere. Clouds produce artifacts in AAI calculations on the individual measurement (7 km) scale, which was not seen with previous instruments, as well as on large (1000+ km) scales. To reduce these artefacts, we used three different AAI calculation techniques of varying complexity. We find that the AAI artifacts are reduced when using more complex techniques.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-423, https://doi.org/10.5194/amt-2020-423, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called Generalized Nonlinear Retrieval Analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Roberto Román, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos
Atmos. Meas. Tech., 13, 6293–6310, https://doi.org/10.5194/amt-13-6293-2020, https://doi.org/10.5194/amt-13-6293-2020, 2020
Short summary
Short summary
Atmospheric-aerosol and gaseous properties can be derived at night-time if the lunar irradiance at the ground is measured. To this end, the knowledge of lunar irradiance at the top of the atmosphere is necessary. This extraterrestrial lunar irradiance is usually calculated by models since it varies with several geometric factors mainly depending on time and location. This paper proposes a correction to the most used lunar-irradiance model to be applied for atmospheric-aerosol characterization.
Thomas Wagner, Steffen Dörner, Steffen Beirle, Sebastian Donner, and Stefan Kinne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-457, https://doi.org/10.5194/amt-2020-457, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We compare measured and simulated O4 absorptions for conditions of extremely low aerosol optical depth, for which the uncertainties related to imperfect knowledge of aerosol properties don't significantly affect the comparison results. The simulations underestimate the measurements by 15 % to 20 %. Even if no aerosols are considered, the simulated O4 absorptions are systematically lower than the measurements. Our results indicate a fundamental inconsistency between simulations and measurements.
Hai Zhang, Shobha Kondragunta, Istvan Laszlo, and Mi Zhou
Atmos. Meas. Tech., 13, 5955–5975, https://doi.org/10.5194/amt-13-5955-2020, https://doi.org/10.5194/amt-13-5955-2020, 2020
Short summary
Short summary
Geostationary Operational Environmental Satellites (GOES) retrieve high temporal resolution aerosol optical depth, which is a measure of the aerosol quantity within the atmospheric column. This work introduces an algorithm that improves the accuracy of the aerosol optical depth retrievals from GOES. The resulting data product can be used in monitoring the air quality and climate change research.
Stefan Noël, Klaus Bramstedt, Alexei Rozanov, Elizaveta Malinina, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 13, 5643–5666, https://doi.org/10.5194/amt-13-5643-2020, https://doi.org/10.5194/amt-13-5643-2020, 2020
Short summary
Short summary
A new approach to derive stratospheric aerosol extinction profiles from SCIAMACHY solar occultation measurements based on an onion-peeling method is presented. The resulting extinctions at 452, 525 and 750 nm compare well with other limb and occultation data from, e.g. SAGE and SCIAMACHY, but show small oscillating features which vanish in monthly anomalies. Major volcanic eruptions, polar stratospheric clouds and influences of the quasi-biennial oscillation can be identified in the time series.
Yun Dong, Elena Spinei, and Anuj Karpatne
Atmos. Meas. Tech., 13, 5537–5550, https://doi.org/10.5194/amt-13-5537-2020, https://doi.org/10.5194/amt-13-5537-2020, 2020
Short summary
Short summary
This paper is about a feasibility study of applying a machine learning technique to derive aerosol properties from a single MAX-DOAS sky scan, which detects sky-scattered UV–visible photons at multiple elevation angles. Evaluation of retrieved aerosol properties shows good performance of the ML algorithm, suggesting several advantages of a ML-based inversion algorithm such as fast data inversion, simple implementation and the ability to extract information not available using other algorithms.
Willem J. Marais, Robert E. Holz, Jeffrey S. Reid, and Rebecca M. Willett
Atmos. Meas. Tech., 13, 5459–5480, https://doi.org/10.5194/amt-13-5459-2020, https://doi.org/10.5194/amt-13-5459-2020, 2020
Short summary
Short summary
Space agencies use moderate-resolution satellite imagery to study how smoke, dust, pollution (aerosols) and cloud types impact the Earth's climate; these space agencies include NASA, ESA and the China Meteorological Administration. We demonstrate in this paper that an algorithm with convolutional neural networks can greatly enhance the automated detection of aerosols and cloud types from satellite imagery. Our algorithm is an improvement on current aerosol and cloud detection algorithms.
Anin Puthukkudy, J. Vanderlei Martins, Lorraine A. Remer, Xiaoguang Xu, Oleg Dubovik, Pavel Litvinov, Brent McBride, Sharon Burton, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 13, 5207–5236, https://doi.org/10.5194/amt-13-5207-2020, https://doi.org/10.5194/amt-13-5207-2020, 2020
Short summary
Short summary
In this work, we report the demonstration and validation of the aerosol properties retrieved using AirHARP and GRASP for data from the NASA ACEPOL campaign 2017. These results serve as a proxy for the scale and detail of aerosol retrievals that are anticipated from future space mission data, as HARP CubeSat (mission begins 2020) and HARP2 (aboard the NASA PACE mission with the launch in 2023) are near duplicates of AirHARP and are expected to provide the same level of aerosol characterization.
Verena Schenzinger and Axel Kreuter
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-368, https://doi.org/10.5194/amt-2020-368, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
When measuring the aerosol optical depth of the atmosphere, clouds in front of the sun lead to erroneously high values. Therefore, measurements that are potentially affected by clouds need to be removed from the dataset by an automatic process. As the currently used algorithm cannot reliably identify thin clouds, we developed a new one based on a method borrowed from machine learning. Tests with 10 years of data show improved performance of the new routine and therefore higher data quality.
Antti Lipponen, Ville Kolehmainen, Pekka Kolmonen, Antti Kukkurainen, Tero Mielonen, Neus Sabater, Larisa Sogacheva, Timo H. Virtanen, and Antti Arola
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-229, https://doi.org/10.5194/amt-2020-229, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We have developed a new computational method to post-process correct the satellite aerosol retrievals. The proposed method combines the conventional satellite aerosol retrievals relying on physics-based models and machine learning. The results show significantly improved accuracy in the aerosol data over the operational satellite data products. The correction can be applied to the existing satellite aerosol datasets with no need to fully re-process the much larger original radiance data.
Patrick Chazette
Atmos. Meas. Tech., 13, 4461–4477, https://doi.org/10.5194/amt-13-4461-2020, https://doi.org/10.5194/amt-13-4461-2020, 2020
Short summary
Short summary
By coupling lidar on board a ULA and ground-based lidar measurements, this paper highlights aerosol transport over the Strait of Gibraltar. It shows that the lidar-derived aerosol optical properties can be different from what is commonly accepted. It presents unprecedented vertical profiles over this region and relates them to the origin of air masses. The results are based on ground, airborne, and spaceborne observations, as well as multiple retro-trajectory analyses.
Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner
Atmos. Meas. Tech., 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020, https://doi.org/10.5194/amt-13-4261-2020, 2020
Short summary
Short summary
Two common measurements that represent atmospheric aerosol loading are the backscatter and extinction coefficients. Measuring backscatter and extinction coefficients requires different viewing geometries and fundamentally different instrument systems. Further, these coefficients are not directly comparable. We present an algorithm to convert SAGE-observed extinction coefficients to backscatter coefficients for intercomparison with lidar backscatter products, followed by evaluation of the method.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Kirk Knobelspiesse, Amir Ibrahim, Brian Cairns, Susanne E. Craig, Guangliang Fu, Otto Hasekamp, Yongxiang Hu, and P. Jeremy Werdell
Atmos. Meas. Tech., 13, 3939–3956, https://doi.org/10.5194/amt-13-3939-2020, https://doi.org/10.5194/amt-13-3939-2020, 2020
Arantxa M. Triana-Gómez, Georg Heygster, Christian Melsheimer, Gunnar Spreen, Monia Negusini, and Boyan H. Petkov
Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020, https://doi.org/10.5194/amt-13-3697-2020, 2020
Short summary
Short summary
In the Arctic, in situ measurements are sparse and standard remote sensing retrieval methods have problems. We present advances in a retrieval algorithm for vertically integrated water vapour tuned for polar regions. In addition to the initial sensor used (AMSU-B), we can now also use data from the successor instrument (MHS). Additionally, certain artefacts are now filtered out. Comparison with radiosondes shows the overall good performance of the updated algorithm.
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Sergey Korkin, Joel S. Schafer, Alexander Smirnov, Mikhail Sorokin, and Alexei Lyapustin
Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, https://doi.org/10.5194/amt-13-3375-2020, 2020
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020, https://doi.org/10.5194/amt-13-1909-2020, 2020
Short summary
Short summary
Stratospheric sulfate aerosols increase the Earth's planetary albedo and can lead to significant surface cooling, for example in the aftermath of volcanic eruptions. Their particle size distribution, important for physical and chemical effects of these aerosols, is still not fully understood. The present paper proposes an explanation for systematic differences in aerosol particle size retrieved from measurements made in different measurement geometries and reported in earlier studies.
Florian Gaudfrin, Olivier Pujol, Romain Ceolato, Guillaume Huss, and Nicolas Riviere
Atmos. Meas. Tech., 13, 1921–1935, https://doi.org/10.5194/amt-13-1921-2020, https://doi.org/10.5194/amt-13-1921-2020, 2020
Short summary
Short summary
A new elastic lidar inversion equation is presented. It is based on the backscattering signal from a surface reference target rather than that from a volumetric layer of reference as is usually done. The method presented can be used in the case of airborne elastic lidar measurements or when the lidar–target line is horizontal. Also, a new algorithm is described to retrieve the lidar ratio and the backscattering coefficient of an aerosol plume without any a priori assumptions about the plume.
Zhuoru Wang, Ka Lok Chan, Klaus-Peter Heue, Adrian Doicu, Thomas Wagner, Robert Holla, and Matthias Wiegner
Atmos. Meas. Tech., 13, 1835–1866, https://doi.org/10.5194/amt-13-1835-2020, https://doi.org/10.5194/amt-13-1835-2020, 2020
Short summary
Short summary
We present a new aerosol profile retrieval algorithm for MAX-DOAS measurements at high-altitude sites and applied to the MAX-DOAS measurements at UFS. The retrieval algorithm is based on a O4 DSCD lookup table which is dedicated to high-altitude MAX-DOAS measurements. The comparison of retrieved aerosol optical depths (AODs) to sun photometer observations shows good agreement with a correlation coefficient (R) of 0.733 and 0.798 at 360 and 477 nm, respectively.
Alexander Vasilkov, Nickolay Krotkov, Eun-Su Yang, Lok Lamsal, Joanna Joiner, Patricia Castellanos, Zachary Fasnacht, and Robert Spurr
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-458, https://doi.org/10.5194/amt-2019-458, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
To explicitly account for aerosol effects in the OMI cloud and nitrogen dioxide algorithms,
we use a model of aerosol optical properties from a global aerosol
assimilation system and radiative transfer computations. We also account for anisotropic
reflection of Earth's surface. Our aerosol correction increases
the tropospheric nitrogen dioxide retrievals by 20 % for polluted areas and allows to reduce
the known biases in the retrievals.
Elina Giannakaki, Panos Kokkalis, Eleni Marinou, Nikolaos S. Bartsotas, Vassilis Amiridis, Albert Ansmann, and Mika Komppula
Atmos. Meas. Tech., 13, 893–905, https://doi.org/10.5194/amt-13-893-2020, https://doi.org/10.5194/amt-13-893-2020, 2020
Short summary
Short summary
A new method, called ElEx, is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. Comparisons with both Raman lidar profiles during nightime and sun photometer daytime aerosol optical depth observations demonstrate the potential of the ElEx methodology.
Michael J. Garay, Marcin L. Witek, Ralph A. Kahn, Felix C. Seidel, James A. Limbacher, Michael A. Bull, David J. Diner, Earl G. Hansen, Olga V. Kalashnikova, Huikyo Lee, Abigail M. Nastan, and Yan Yu
Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020, https://doi.org/10.5194/amt-13-593-2020, 2020
Short summary
Short summary
The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been operational since early 2000, creating an extensive data set of global Earth observations. Here we introduce the latest version (V23) of the MISR aerosol products, which is reported on a 4.4 km spatial grid and contains retrieved aerosol optical depth and aerosol particle property information derived over both land and water. The changes implemented in V23 have significant impacts on the data product and its interpretation.
Yanyu Wang, Rui Lyu, Xin Xie, Ze Meng, Meijin Huang, Junshi Wu, Haizhen Mu, Qiu-Run Yu, Qianshan He, and Tiantao Cheng
Atmos. Meas. Tech., 13, 575–592, https://doi.org/10.5194/amt-13-575-2020, https://doi.org/10.5194/amt-13-575-2020, 2020
Short summary
Short summary
A satellite-based method for clear-sky aerosol direct radiative forcing (ADRF) retrieval and spatiotemporal characteristics of ADRF in eastern China were displayed during 2000–2016. Our analysis shows aerosols have a strong cooling effect at the surface, and the changes of ADRF are closely related to the changes of AOD with the development of economic growth and rapid urbanization in eastern China.
Jeremy E. Solbrig, Steven D. Miller, Jianglong Zhang, Lewis Grasso, and Anton Kliewer
Atmos. Meas. Tech., 13, 165–190, https://doi.org/10.5194/amt-13-165-2020, https://doi.org/10.5194/amt-13-165-2020, 2020
Short summary
Short summary
New satellite sensors are able to view visible light, such as that emitted by cities, at night. It may be possible to use the light from cities to assess the amount of particulate matter in the atmosphere and the thickness of clouds. To do this we must understand how light emitted from the Earth's surface changes with time and viewing conditions. This study takes a step towards understanding the characteristics of light emitted by cities and its stability in time.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Mark ter Linden, Maarten Sneep, Johan de Haan, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 6619–6634, https://doi.org/10.5194/amt-12-6619-2019, https://doi.org/10.5194/amt-12-6619-2019, 2019
Short summary
Short summary
This paper discusses a neural network forward model used by the operational aerosol layer height (ALH) retrieval algorithm for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Sentinel-5 Precursor satellite mission. This model replaces online radiative transfer calculations within the oxygen A-band, improving the speed of the algorithm by 3 orders of magnitude. With this advancement in the algorithm's speed, TROPOMI is set to deliver the ALH product operationally.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Short summary
Aerosol optical depth (AOD) from a geostationary satellite has been retrieved, and validated and diurnal cycles of aerosols are discussed over the eastern hemisphere and a 2-month period of May–June 2016. The new AOD product matches well with AERONET as well as with the standard MODIS product. Future work to make this algorithm operational will need to re-examine masking including snow masks, re-evaluate assumed aerosol models for geosynchronous geometry and address the surface characterization.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019, https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
Short summary
For two cases from the NASA ORACLES experiments, we retrieve aerosol and cloud properties and calculate a direct aerosol radiative effect (DARE). We investigate the relationship between DARE and the cloud albedo by specifying the albedo for which DARE transitions from a cooling to warming radiative effect. Our new aerosol retrieval algorithm is successful despite complexities associated with scenes that contain aerosols above clouds and decreases the uncertainty on retrieved aerosol parameters.
Jiyunting Sun, Pepijn Veefkind, Swadhin Nanda, Peter van Velthoven, and Pieternel Levelt
Atmos. Meas. Tech., 12, 6319–6340, https://doi.org/10.5194/amt-12-6319-2019, https://doi.org/10.5194/amt-12-6319-2019, 2019
Short summary
Short summary
Single scattering albedo (SSA) is critical for reducing uncertainties in radiative forcing assessment. This paper presents two methods to retrieve SSA from satellite observations of the near-UV absorbing aerosol index (UVAI). The first is physically based radiative transfer simulations; the second is a statistically based machine learning algorithm. The result of the latter is encouraging. Both methods show that the ALH is necessary to quantitatively interpret aerosol absorption from UVAI.
Rebecca M. Pauly, John E. Yorks, Dennis L. Hlavka, Matthew J. McGill, Vassilis Amiridis, Stephen P. Palm, Sharon D. Rodier, Mark A. Vaughan, Patrick A. Selmer, Andrew W. Kupchock, Holger Baars, and Anna Gialitaki
Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, https://doi.org/10.5194/amt-12-6241-2019, 2019
Short summary
Short summary
The Cloud Aerosol Transport System (CATS) demonstrated that direct calibration of 1064 nm lidar data from a spaceborne platform is possible. By normalizing the CATS signal to a modeled molecular backscatter profile the CATS data were calibrated, enabling the derivation of optical properties of clouds and aerosols. Comparisons of the calibrated signal with airborne lidar, ground-based lidar, and spaceborne lidar all show agreement within the estimated error bars of the respective instruments.
Jayanta Kar, Kam-Pui Lee, Mark A. Vaughan, Jason L. Tackett, Charles R. Trepte, David M. Winker, Patricia L. Lucker, and Brian J. Getzewich
Atmos. Meas. Tech., 12, 6173–6191, https://doi.org/10.5194/amt-12-6173-2019, https://doi.org/10.5194/amt-12-6173-2019, 2019
Short summary
Short summary
This work describes the science algorithm for the recently released CALIPSO level 3 stratospheric aerosol product. It is shown that the retrieved extinction profiles capture the major stratospheric perturbations over the last decade resulting from volcanic eruptions, pyroCb smoke events, and signatures of stratospheric dynamics. An initial assessment is also provided by intercomparison with the latest aerosol retrievals from the SAGE III instrument aboard the International Space Station.
Steffen Mauceri, Bruce Kindel, Steven Massie, and Peter Pilewskie
Atmos. Meas. Tech., 12, 6017–6036, https://doi.org/10.5194/amt-12-6017-2019, https://doi.org/10.5194/amt-12-6017-2019, 2019
Short summary
Short summary
Aerosols are fine particles that are suspended in Earth’s atmosphere. A better understanding of aerosols is important to lower uncertainties in climate predictions. We propose measuring aerosols from satellites and airplanes equipped with hyperspectral cameras using an artificial neural network, a form of machine learning. We applied our neural network to hyperspectral observations from a recent airplane flight over India and find general agreement with independent aerosol measurements.
Pasquale Sellitto, Henda Guermazi, Elisa Carboni, Richard Siddans, and Mike Burton
Atmos. Meas. Tech., 12, 5381–5389, https://doi.org/10.5194/amt-12-5381-2019, https://doi.org/10.5194/amt-12-5381-2019, 2019
Short summary
Short summary
Volcanoes release complex plumes of gas and particles. Volcanic gases, like SO2, can additionally condense, once released, to form particles, sulphate aerosol (SA). Observing simultaneously SO2+SA is important: their proportion provides information on the internal state of volcanoes, and can be used to predict plumes' atmospheric evolution and their environmental and climatic impacts. We developed a new method to observe simultaneously, for the first time, SO2+SA using infrared remote sensing.
Martin de Graaf, L. Gijsbert Tilstra, and Piet Stammes
Atmos. Meas. Tech., 12, 5119–5135, https://doi.org/10.5194/amt-12-5119-2019, https://doi.org/10.5194/amt-12-5119-2019, 2019
Short summary
Short summary
A new algorithm is described, which was used to derive direct radiative effects of aerosols above clouds. These effects are among the largest uncertainties in global climate model simulations, and observations are needed to constrain these simulations. A recently developed method was applied to a combination of satellite reflectance measurements to cover the entire shortwave (solar) spectrum. Radiative effects of aerosols over the south-east Atlantic are presented, where the effects are largest.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Julian Hofer, Holger Baars, Dietrich Althausen, and Sabur F. Abdullaev
Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, https://doi.org/10.5194/amt-12-4849-2019, 2019
Matthias Tesche, Alexei Kolgotin, Moritz Haarig, Sharon P. Burton, Richard A. Ferrare, Chris A. Hostetler, and Detlef Müller
Atmos. Meas. Tech., 12, 4421–4437, https://doi.org/10.5194/amt-12-4421-2019, https://doi.org/10.5194/amt-12-4421-2019, 2019
Short summary
Short summary
Today, few lidar are capable of triple-wavelength particle linear depolarization ratio (PLDR) measurements. This study is the first systematic investigation of the effect of different choices of PLDR input on the inversion of lidar measurements of mineral dust and dusty mixtures using light scattering by randomly oriented spheroids. We provide recommendations of the most suitable input parameters for use with the applied methodology, based on a relational assessment of the inversion output.
Gregori de Arruda Moreira, Fábio Juliano da Silva Lopes, Juan Luis Guerrero-Rascado, Jonatan João da Silva, Antonio Arleques Gomes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Meas. Tech., 12, 4261–4276, https://doi.org/10.5194/amt-12-4261-2019, https://doi.org/10.5194/amt-12-4261-2019, 2019
Short summary
Short summary
In this paper, we present a comparative analysis of the use of lidar-backscattered signals at three wavelengths (355, 532 and 1064 nm) to study the ABL by investigating high-order moments, which gives us information about the ABL height (derived using the variance method), aerosol layer movements (skewness) and mixing conditions (kurtosis) at several heights.
Arvid Langenbach, Gerd Baumgarten, Jens Fiedler, Franz-Josef Lübken, Christian von Savigny, and Jacob Zalach
Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019, https://doi.org/10.5194/amt-12-4065-2019, 2019
Short summary
Short summary
Stratospheric aerosol backscatter ratios in the Arctic using Rayleigh, Mie and Raman backscattered signals were calculated. A backscatter ratio calculation during daytime was performed for the first time. Sharp aerosol layers thinner than 1 km over several days were observed. The seasonal cycle of stratospheric background aerosol in high latitudes including the summer months was calculated for the first time. Top altitude of the aerosol layer was found to reach up to 34 km, especially in summer.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Yongxiang Hu, Kirk Knobelspiesse, P. Jeremy Werdell, Amir Ibrahim, Brian Cairns, and Alison Chase
Atmos. Meas. Tech., 12, 3921–3941, https://doi.org/10.5194/amt-12-3921-2019, https://doi.org/10.5194/amt-12-3921-2019, 2019
Cited articles
Aires, F., Rossow, W. B., Scott, N. A., and Chédin, A.: Remote sensing from the infrared atmospheric sounding interferometer instrument 1. Compression, denoising, and first-guess retrieval algorithms, J. Geophys. Res., 107, 4619, https://doi.org/10.1029/2001JD000955, 2002.
Alexander, D.: Volcanic ash in the atmosphere and risks for civil aviation: A study in European crisis management, Int. J. Disaster Risk Sci., 4, 9–19, https://doi.org/10.1007/s13753-013-0003-0, 2013.
Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the air: A review of the effects of particulate matter air pollution on human health, J. Med. Toxicol., 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1, 2012.
Antonelli, P., Revercomb, H. E., Sromovsky, L. A., Smith, W. L., Knuteson, R. O., Tobin, D. C., Garcia, R. K., Howell, H. B., Huang, H.-L., and Best, F. A.: A principal component noise filter for high spectral resolution infrared measurements, J. Geophys. Res., 109, D23102, https://doi.org/10.1029/2004JD004862, 2004.
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, New York, NY, USA, 1995a.
Bishop, C. M.: Training with noise is equivalent to Tikhonov regularization, Neural Comput., 7, 108–116, https://doi.org/10.1162/neco.1995.7.1.108, 1995b.
Boesche, E., Stammes, P., Ruhtz, T., Preusker, R., and Fischer, J.: Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements, Appl. Optics, 45, 8790–8805, https://doi.org/10.1364/AO.45.008790, 2006.
Bös, S. and Amari, S.: Annealed online learning in multilayer neural networks, in: On-Line Learning in Neural Networks, edited by: Saad, D., Chap. 10, 209–229, Cambridge University Press, New York, NY, USA, https://doi.org/10.1017/CBO9780511569920.011, 1999.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, K.-F., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Chap. 5, 571–657, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Brajard, J., Jamet, C., Moulin, C., and Thiria, S.: Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: Application to absorbing aerosols, Neural Networks, 19, 178–185, https://doi.org/10.1016/j.neunet.2006.01.015, 2006.
Brajard, J., Santer, R., Crépon, M., and Thiria, S.: Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion, Remote Sens. Environ., 126, 51–61, https://doi.org/10.1016/j.rse.2012.07.004, 2012.
Caruana, R., Lawrence, S., and Giles, C. L.: Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping, in: Proceedings of Neural Information Processing Systems (NIPS) Conference 2000, edited by: Leen, T. K., Dietterich, T. G., and Tresp, V., 402–408, MIT Press, Cambridge, MA, USA, 2001.
Deuzé, J. L., Goloub, P., Herman, M., Marchand, A., Perry, G., Susana, S., and Tanré, D.: Estimate of the aerosol properties over the ocean with POLDER, J. Geophys. Res., 105, 15329–15346, https://doi.org/10.1029/2000JD900148, 2000.
Deuzé, J. L., Bréon, F., Devaux, C., Goloub, P., Herman, M. Lafrance, B., Maignan, F., Marchand, A., Nadal, F., Perry, G., and Tanré, D.: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, J. Geophys. Res., 106, 4913–4926, https://doi.org/10.1029/2000JD900364, 2001.
Diouf, D., Niang, A., Brajard, J., Crépon, M., and Thiria, S.: Retrieving aerosol characteristics and sea-surface chlorophyll from satellite ocean color multi-spectral sensors using a neural-variational method, Remote Sens. Environ., 130, 74–86, https://doi.org/10.1016/j.rse.2012.11.002, 2013.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20796, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res., 105, 9791–9806, https://doi.org/10.1029/2000JD900040, 2000.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dybowski, R. and Roberts, S. J.: Confidence intervals and prediction intervals for feedforward neural networks, in: Clinical Applications of Artificial Neural Networks, edited by: Dybowski, R. and Gant, V., Chap. 13, 298–326, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511543494.013, 2001.
Hagan, M. T. and Menhaj, M. B.: Training feedforward networks with the Marquardt algorithm, IEEE T. Neural Networ., 5, 989–993, https://doi.org/10.1109/72.329697, 1994.
Han, B., Vucetic, S., Braverman, A., and Obradovic, Z.: A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data, Eng. Appl. Artif. Intel., 19, 787–795, https://doi.org/10.1016/j.engappai.2006.05.009, 2006.
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, J. Geophys. Res., 102, 6831–6864, https://doi.org/10.1029/96JD03436, 1997.
Hansen, J. E. and Travis, L. D.: Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, https://doi.org/10.1007/BF00168069, 1974.
Hansen, P. C. and O'Leary, D. P.: The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14, 1487–1503, https://doi.org/10.1137/0914086, 1993.
Hasekamp, O. P. and Landgraf, J.: A linearized vector radiative transfer model for atmospheric trace gas retrieval, J. Quant. Spectrosc. Ra., 75, 221–238, https://doi.org/10.1016/S0022-4073(01)00247-3, 2002.
Hasekamp, O. P. and Landgraf, J.: Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing, J. Geophys. Res., 110, D04203, https://doi.org/10.1029/2004JD005260, 2005.
Hasekamp, O. P. and Landgraf, J.: Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements, Appl. Optics, 46, 3332–3344, https://doi.org/10.1364/AO.46.003332, 2007.
Hasekamp, O. P., Litvinov, P., and Butz, A.: Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements, J. Geophys. Res., 116, D14204, https://doi.org/10.1029/2010JD015469, 2011.
Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, USA, 1999.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Holmström, L. and Koistinen, P.: Using additive noise in back-propagation training, IEEE T. Neural Networ., 3, 24–38, https://doi.org/10.1109/72.105415, 1992.
Jamet, C., Thiria, S., Moulin, C., and Crépon, M.: Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: A feasibility study, J. Atmos. Ocean. Tech., 22, 460–475, https://doi.org/10.1175/JTECH1688.1, 2005.
Kaufman, Y. J. and Koren, I.: Smoke and pollution aerosol effect on cloud cover, Science, 313, 655–658, https://doi.org/10.1126/science.1126232, 2006.
KNMI: OMI News: More North American wildfire smoke observed over Europe, available at: http://www.knmi.nl/omi/news/archive/fullFiles/2013-07-11_smoke_canadian_fires_en.php (last access: 25 November 2014), 2013.
Knobelspiesse, K., Cairns, B., Ottaviani, M., Ferrare, R., Hair, J., Hostetler, C., Obland, M., Rogers, R., Redemann, J., Shinozuka, Y., Clarke, A., Freitag, S., Howell, S., Kapustin, V., and McNaughton, C.: Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar, Atmos. Chem. Phys., 11, 7045–7067, https://doi.org/10.5194/acp-11-7045-2011, 2011.
Lawrence, S., Giles, C. L., and Tsoi, A. C.: Lessons in neural network training: Overfitting may be harder than expected, in: Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI-97, 540–545, AAAI Press, Providence, RI, USA, 1997.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.: Backpropagation applied to handwritten ZIP code recognition, Neural Comput., 1, 541–551, https://doi.org/10.1162/neco.1989.1.4.541, 1989.
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Mishchenko, M. I. and Travis, L. D.: Satellite retrievals of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight, J. Geophys. Res., 102, 16989–17013, https://doi.org/10.1029/96JD02425, 1997.
Mishchenko, M. I., Cairns, B., Hansen, J. E., Travis, L. D., Burg, R., Kaufman, Y. J., Martins, J. V., and Shettle, E. P.: Monitoring of aerosol forcing of climate from space: Analysis of measurement requirements, J. Quant. Spectrosc. Ra., 88, 149–161, https://doi.org/10.1016/j.jqsrt.2004.03.030, 2004.
Mishchenko, M. I., Cairns, B., Chowdhary, J., Geogdzhayev, I. V., Liu, L., and Travis, L. D.: Remote sensing of tropospheric aerosols from aircraft and satellites, J. Phys. Conf. Series, 6, 73–89, https://doi.org/10.1088/1742-6596/6/1/005, 2005.
Møller, M. F.: A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6, 525–533, https://doi.org/10.1016/S0893-6080(05)80056-5, 1993.
Monna, W. and Bosveld, F.: In Higher Spheres. 40 years of observations at the Cabauw Site, KNMI Publication 232, De Bilt, the Netherlands, available at: http://www.knmi.nl/knmi-library/knmipubmetnummer/knmipub232.pdf (last access: 25 November 2014), 2013.
Niang, A., Badran, F., Moulin, C., Crépon, M., and Thiria, S.: Retrieval of aerosol type and optical thickness over the M}editerranean from {SeaWiFS images using an automatic neural classification method, Remote Sens. Environ., 100, 82–94, https://doi.org/10.1016/j.rse.2005.10.005, 2006.
O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman, S.: Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res., 108, 4559, https://doi.org/10.1029/2002JD002975, 2003.
Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del Frate, F., and Stramondo, S.: Volcanic ash detection and retrievals using MODIS data by means of neural networks, Atmos. Meas. Tech., 4, 2619–2631, https://doi.org/10.5194/amt-4-2619-2011, 2011.
Radosavljevic, V., Vucetic, S., and Obradovic, Z.: A data-mining technique for aerosol retrieval across multiple accuracy measures, IEEE Geosci. Remote Sens. Lett., 7, 411–415, https://doi.org/10.1109/LGRS.2009.2037720, 2010.
Ristovski, K., Vucetic, S., and Obradovic, Z.: Uncertainty analysis of neural-network-based aerosol retrieval, IEEE T. Geosci. Remote, 50, 409–414, https://doi.org/10.1109/TGRS.2011.2166120, 2012.
Rodgers, C. D.: Characterization and error analysis of profiles derived from remote sounding measurements, J. Geophys. Res., 95, 5587–5595, https://doi.org/10.1029/JD095iD05p05587, 1990.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, London, UK, 2000.
Rosenfeld, D., Wood, R., Donner, L. J., and Sherwood, S. C.: Aerosol Cloud-Mediated Radiative Forcing: Highly Uncertain and Opposite Effects from Shallow and Deep Clouds, in: Climate Science for Serving Society, edited by: Asrar, G. R. and Hurrell, J. W., Chap. 5, 105–149, Springer, Dordrecht, the Netherlands, 10.1007/978-94-007-6692-1_5, 2013.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors, Nature, 323, 533–536, https://doi.org/10.1038/323533a0, 1986.
Schiller, H.: Model inversion by parameter fit using NN emulating the forward model – Evaluation of indirect measurements, Neural Networks, 20, 479–483, https://doi.org/10.1016/j.neunet.2007.04.022, 2007.
Snik, F., Karalidi, T., and Keller, C. U.: Spectral modulation for full linear polarimetry, Appl. Optics, 48, 1337–1346, https://doi.org/10.1364/AO.48.001337, 2009.
Tsekeri, A., Gross, B., Moshary, F., and Ahmed, S.: Potential retrieval of aerosol properties combining the multispectral, multiangle Research Scanning Polarimeter (RSP) measurements of the intensity and linear polarization of light, in: Proc. 91st American Meteorological Society Annual Meeting, Seattle, WA, USA, 2011.
van Harten, G., de Boer, J., Rietjens, J. H. H., Di Noia, A., Snik, F., Volten, H., Smit, J. M., Hasekamp, O. P., Henzing, J. S., and Keller, C. U.: Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument, Atmos. Meas. Tech., 7, 4341–4351, https://doi.org/10.5194/amt-7-4341-2014, 2014.
Waquet, F., Cairns, B., Knobelspiesse, K., Chowdhary, J., Travis, L. D., Schmid, B., and Mishchenko, M. I.: Polarimetric remote sensing of aerosols over land, J. Geophys. Res., 114, D01206, https://doi.org/10.1029/2008JD010619, 2009.
Werbos, P. J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Ph.D. thesis, Harvard University, Cambridge, MA, USA, 1974.
Wilson, D. R. and Martinez, T. R.: The inefficiency of batch training for large training sets, in: Proc. IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN ´00), Vol. 2, 113–117, https://doi.org/10.1109/IJCNN.2000.857883, 2000.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Short summary
A neural network algorithm has been developed to retrieve aerosol microphysical parameters from ground-based measurements of skylight intensity and polarization. The neural network is capable of producing accurate estimates of aerosol optical thicknesses, effective radii and refractive index. In addition, it is shown that the use of the neural retrievals as initial guess for an iterative retrieval algorithm results in improved convergence and retrieval accuracy.
A neural network algorithm has been developed to retrieve aerosol microphysical parameters from...