Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF 5-year value: 3.707
IF 5-year
CiteScore value: 6.3
SNIP value: 1.383
IPP value: 3.75
SJR value: 1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
h5-index value: 49
Volume 8, issue 7
Atmos. Meas. Tech., 8, 2909–2926, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Saharan Aerosol Long-range Transport and Aerosol-Cloud-interaction...

Atmos. Meas. Tech., 8, 2909–2926, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Jul 2015

Research article | 21 Jul 2015

Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

F. Chouza1, O. Reitebuch1, S. Groß1, S. Rahm1, V. Freudenthaler2, C. Toledano3, and B. Weinzierl1,2 F. Chouza et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 2Ludwig-Maximilians-Universität München (LMU), Meteorologisches Institut, München, Germany
  • 3University of Valladolid, Atmospheric Optics Group, Valladolid, Spain

Abstract. A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm.

The proposed method was applied to measurements from the SALTRACE experiment in June–July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

Publications Copernicus