Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 11
Atmos. Meas. Tech., 8, 4615–4636, 2015
https://doi.org/10.5194/amt-8-4615-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 4615–4636, 2015
https://doi.org/10.5194/amt-8-4615-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Nov 2015

Research article | 03 Nov 2015

Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: effects of mass accuracy on location-constrained fits

J. C. Corbin et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
Peak-integration uncertainties in the Aerodyne high-resolution aerosol mass spectrometer (AMS) are analyzed in detail using a combination of empirical data analysis and Monte Carlo approaches. The most general conclusion, applicable to any mass spectrometer, is that non-zero mass accuracy leads to a percentage error in constrained peak fits, even for well-resolved peaks. For overlapping peaks, this mass-accuracy effect may be viewed as a reduction in the effective m/z-calibration precision.
Peak-integration uncertainties in the Aerodyne high-resolution aerosol mass spectrometer (AMS)...
Citation