Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 2
Atmos. Meas. Tech., 8, 541–552, 2015
https://doi.org/10.5194/amt-8-541-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 541–552, 2015
https://doi.org/10.5194/amt-8-541-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Feb 2015

Research article | 03 Feb 2015

A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere

M. Cazorla et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
We present a description of a new instrument designed to detect formaldehyde (HCHO) in situ on airborne platforms. The instrument combines state-of-the art laser technology with single-photon counting detection to provide unmatched performance in a small autonomous package. The development of this In Situ Airbornes Formaldehyde (ISAF) instrument provides a significant new capability for NASA’s high altitude aircraft that requires little space and provides ultra-sensitive detection.
We present a description of a new instrument designed to detect formaldehyde (HCHO) in situ on...
Citation