Articles | Volume 9, issue 5
Atmos. Meas. Tech., 9, 2241–2252, 2016
https://doi.org/10.5194/amt-9-2241-2016
Atmos. Meas. Tech., 9, 2241–2252, 2016
https://doi.org/10.5194/amt-9-2241-2016
Research article
20 May 2016
Research article | 20 May 2016

A microwave satellite water vapour column retrieval for polar winter conditions

Christopher Perro et al.

Related authors

Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021,https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds
Maria P. Cadeddu, Virendra P. Ghate, and Mario Mech
Atmos. Meas. Tech., 13, 1485–1499, https://doi.org/10.5194/amt-13-1485-2020,https://doi.org/10.5194/amt-13-1485-2020, 2020
Short summary
Modelling the relationship between liquid water content and cloud droplet number concentration observed in low clouds in the summer Arctic and its radiative effects
Joelle Dionne, Knut von Salzen, Jason Cole, Rashed Mahmood, W. Richard Leaitch, Glen Lesins, Ian Folkins, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 20, 29–43, https://doi.org/10.5194/acp-20-29-2020,https://doi.org/10.5194/acp-20-29-2020, 2020
Short summary
Pan-Arctic measurements of wintertime water vapour column using a satellite-borne microwave radiometer
Christopher Perro, Thomas J. Duck, Glen Lesins, Kimberly Strong, Penny M. Rowe, James R. Drummond, and Robert J. Sica
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-381,https://doi.org/10.5194/amt-2018-381, 2019
Publication in AMT not foreseen
Short summary
Experimental total uncertainty of the derived GNSS-integrated water vapour using four co-located techniques in Finland
Ermanno Fionda, Maria Cadeddu, Vinia Mattioli, and Rosa Pacione
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-161,https://doi.org/10.5194/amt-2018-161, 2018
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
Elena Sánchez-García, Javier Gorroño, Itziar Irakulis-Loitxate, Daniel J. Varon, and Luis Guanter
Atmos. Meas. Tech., 15, 1657–1674, https://doi.org/10.5194/amt-15-1657-2022,https://doi.org/10.5194/amt-15-1657-2022, 2022
Short summary
Mapping the spatial distribution of NO2 with in situ and remote sensing instruments during the Munich NO2 imaging campaign
Gerrit Kuhlmann, Ka Lok Chan, Sebastian Donner, Ying Zhu, Marc Schwaerzel, Steffen Dörner, Jia Chen, Andreas Hueni, Duc Hai Nguyen, Alexander Damm, Annette Schütt, Florian Dietrich, Dominik Brunner, Cheng Liu, Brigitte Buchmann, Thomas Wagner, and Mark Wenig
Atmos. Meas. Tech., 15, 1609–1629, https://doi.org/10.5194/amt-15-1609-2022,https://doi.org/10.5194/amt-15-1609-2022, 2022
Short summary
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic
Tobias Christoph Valentin Werner Riess, Klaas Folkert Boersma, Jasper van Vliet, Wouter Peters, Maarten Sneep, Henk Eskes, and Jos van Geffen
Atmos. Meas. Tech., 15, 1415–1438, https://doi.org/10.5194/amt-15-1415-2022,https://doi.org/10.5194/amt-15-1415-2022, 2022
Short summary
Simulated multispectral temperature and atmospheric composition retrievals for the JPL GEO-IR Sounder
Vijay Natraj, Ming Luo, Jean-Francois Blavier, Vivienne H. Payne, Derek J. Posselt, Stanley P. Sander, Zhao-Cheng Zeng, Jessica L. Neu, Denis Tremblay, Longtao Wu, Jacola A. Roman, Yen-Hung Wu, and Leonard I. Dorsky
Atmos. Meas. Tech., 15, 1251–1267, https://doi.org/10.5194/amt-15-1251-2022,https://doi.org/10.5194/amt-15-1251-2022, 2022
Short summary
Truth and uncertainty. A critical discussion of the error concept versus the uncertainty concept
Thomas von Clarmann, Steven Compernolle, and Frank Hase
Atmos. Meas. Tech., 15, 1145–1157, https://doi.org/10.5194/amt-15-1145-2022,https://doi.org/10.5194/amt-15-1145-2022, 2022
Short summary

Cited articles

Boukabara, S., Garrett, K., and Chen, W.: Global Coverage of Total Precipitable Water Using a Microwave Variational Algorithm, IEEE T. Geosci. Remote, 48, 3608–3621, 2010.
Bromwich, D., Kuo, Y., Serreze, M., Walsh, J., Bai, L., Barlage, M. Hines, K., and Slater, A.: Arctic system reanalysis: call for community involvement, EOS T. Am. Geophys. Un., 91, 13–14, 2010.
Bühler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943, https://doi.org/10.5194/acp-12-10925-2012, 2012.
Cadeddu, M., Turner, D., and Liljegren, J.: A neural network for real-time retrievals of PWV and LWP from Arctic millimeter wave ground based observations, IEEE T. Geosci. Remote, 9, 1887–1900, 2009.
Download
Short summary
A new microwave satellite water vapour retrieval method for use in the Arctic winter has been developed that uses auxiliary information for atmospheric conditions. When compared to ground-based measurements, the new retrieval has a smaller root mean square deviation than other satellite measurement techniques and can produce high-resolution pan-Arctic water vapour column maps.