Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-2241-2016
https://doi.org/10.5194/amt-9-2241-2016
Research article
 | 
20 May 2016
Research article |  | 20 May 2016

A microwave satellite water vapour column retrieval for polar winter conditions

Christopher Perro, Glen Lesins, Thomas J. Duck, and Maria Cadeddu

Related authors

Propagating Information Content: An Example with Advection
David D. Turner, Maria P. Cadeddu, Julia Simonson, and Timothy J. Wagner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4124,https://doi.org/10.5194/egusphere-2024-4124, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023,https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021,https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds
Maria P. Cadeddu, Virendra P. Ghate, and Mario Mech
Atmos. Meas. Tech., 13, 1485–1499, https://doi.org/10.5194/amt-13-1485-2020,https://doi.org/10.5194/amt-13-1485-2020, 2020
Short summary
Modelling the relationship between liquid water content and cloud droplet number concentration observed in low clouds in the summer Arctic and its radiative effects
Joelle Dionne, Knut von Salzen, Jason Cole, Rashed Mahmood, W. Richard Leaitch, Glen Lesins, Ian Folkins, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 20, 29–43, https://doi.org/10.5194/acp-20-29-2020,https://doi.org/10.5194/acp-20-29-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary

Cited articles

Boukabara, S., Garrett, K., and Chen, W.: Global Coverage of Total Precipitable Water Using a Microwave Variational Algorithm, IEEE T. Geosci. Remote, 48, 3608–3621, 2010.
Bromwich, D., Kuo, Y., Serreze, M., Walsh, J., Bai, L., Barlage, M. Hines, K., and Slater, A.: Arctic system reanalysis: call for community involvement, EOS T. Am. Geophys. Un., 91, 13–14, 2010.
Bühler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943, https://doi.org/10.5194/acp-12-10925-2012, 2012.
Cadeddu, M., Turner, D., and Liljegren, J.: A neural network for real-time retrievals of PWV and LWP from Arctic millimeter wave ground based observations, IEEE T. Geosci. Remote, 9, 1887–1900, 2009.
Download
Short summary
A new microwave satellite water vapour retrieval method for use in the Arctic winter has been developed that uses auxiliary information for atmospheric conditions. When compared to ground-based measurements, the new retrieval has a smaller root mean square deviation than other satellite measurement techniques and can produce high-resolution pan-Arctic water vapour column maps.