Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 9, issue 8
Atmos. Meas. Tech., 9, 3911–3919, 2016
https://doi.org/10.5194/amt-9-3911-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 3911–3919, 2016
https://doi.org/10.5194/amt-9-3911-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Aug 2016

Research article | 23 Aug 2016

Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques

Franz-Josef Lübken et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
Wind measurements in the middle atmosphere (MA) are crucial to our understanding of atmospheric processes. We have recently developed a new laser-based method to measure winds called DoRIS (Doppler Rayleigh Iodine Spectrometer) which is the only technique to monitor winds in the middle atmosphere quasi-continuously. We compare our measurements with rocket-borne measurements and find excellent agreement above 30 km. DoRIS can now be considered as a validated method to measure winds in the MA.
Wind measurements in the middle atmosphere (MA) are crucial to our understanding of atmospheric...
Citation