Articles | Volume 9, issue 11
Atmos. Meas. Tech., 9, 5555–5574, 2016
Atmos. Meas. Tech., 9, 5555–5574, 2016

Research article 22 Nov 2016

Research article | 22 Nov 2016

Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals

Sharon P. Burton1, Eduard Chemyakin2, Xu Liu1, Kirk Knobelspiesse3, Snorre Stamnes1, Patricia Sawamura4, Richard H. Moore1, Chris A. Hostetler1, and Richard A. Ferrare1 Sharon P. Burton et al.
  • 1NASA Langley Research Center, Hampton, VA, USA
  • 2Science Systems and Applications, Inc., Hampton, VA, USA
  • 3NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 4Universities Space Research Association, Columbia, MD, USA

Abstract. There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3β + 2α) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β + 2α measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3β + 2α combination.

Here we develop a deeper understanding of the information content and sensitivities of the 3β + 2α system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the understanding of the uncertainties in such retrievals, since it allows for separately assessing the sensitivities and uncertainties of the measurements alone that cannot be corrected by any potential or theoretical improvements to retrieval methodology but must instead be addressed by adding information content.

The sensitivity metrics allow for identifying (1) information content of the measurements vs. a priori information; (2) error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. The results suggest that the 3β + 2α measurement system is underdetermined with respect to the full suite of microphysical parameters considered in this study and that additional information is required, in the form of additional coincident measurements (e.g., sun-photometer or polarimeter) or a priori retrieval constraints. A specific recommendation is given for addressing cross-talk between effective radius and total number concentration.

Short summary
Retrievals of aerosol microphysics exist for ground-based, airborne, and future space-borne lidar measurements. We investigate the information content of a lidar measurement system, using only a forward model but no explicit inversion. The simplified aerosol used here is applicable as a best case for all retrievals in the absence of additional constraints. We report (1) information content of the measurements; (2) uncertainties on the retrieved parameters; and (3) sources of compensating errors.