Articles | Volume 9, issue 3
Atmos. Meas. Tech., 9, 991–999, 2016
https://doi.org/10.5194/amt-9-991-2016
Atmos. Meas. Tech., 9, 991–999, 2016
https://doi.org/10.5194/amt-9-991-2016

Research article 09 Mar 2016

Research article | 09 Mar 2016

Real-time data acquisition of commercial microwave link networks for hydrometeorological applications

Christian Chwala et al.

Related authors

Rain event detection in commercial microwave link attenuation data using convolutional neural networks
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020,https://doi.org/10.5194/amt-13-3835-2020, 2020
Short summary
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020,https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Using vertical phase differences to better resolve 3D gravity wave structure
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021,https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
High-temporal-resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations
Tong Ning and Gunnar Elgered
Atmos. Meas. Tech., 14, 5593–5605, https://doi.org/10.5194/amt-14-5593-2021,https://doi.org/10.5194/amt-14-5593-2021, 2021
Short summary
Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021,https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
GNSS-based water vapor estimation and validation during the MOSAiC expedition
Benjamin Männel, Florian Zus, Galina Dick, Susanne Glaser, Maximilian Semmling, Kyriakos Balidakis, Jens Wickert, Marion Maturilli, Sandro Dahlke, and Harald Schuh
Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021,https://doi.org/10.5194/amt-14-5127-2021, 2021
Short summary
Meteor radar observations of polar mesospheric summer echoes over Svalbard
Joel P. Younger, Iain M. Reid, Chris L. Adami, Chris M. Hall, and Masaki Tsutsumi
Atmos. Meas. Tech., 14, 5015–5027, https://doi.org/10.5194/amt-14-5015-2021,https://doi.org/10.5194/amt-14-5015-2021, 2021
Short summary

Cited articles

Chwala, C., Gmeiner, A., Qiu, W., Hipp, S., Nienaber, D., Siart, U., Eibert, T., Pohl, M., Seltmann, J., Fritz, J., and Kunstmann, H.: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of Southern Germany, Hydrol. Earth Syst. Sci., 16, 2647–2661, https://doi.org/10.5194/hess-16-2647-2012, 2012.
David, N., Alpert, P., and Messer, H.: Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements, Atmos. Chem. Phys., 9, 2413–2418, https://doi.org/10.5194/acp-9-2413-2009, 2009.
Doumounia, A., Gosset, M., Cazenave, F., Kacou, M., and Zougmore, F.: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed, Geophys. Res. Lett., 41, 6016–6022, 2014.
Fencl, M., Rieckermann, J., Schleiss, M., Stránský, D., and Bareš, V.: Assessing the potential of using telecommunication microwave links in urban drainage modelling, Water Sci. Technol., 68, 1810, https://doi.org/10.2166/wst.2013.429, 2013.
Download
Short summary
Commercial microwave link (CML) networks, like they are used as backbone for the cell phone network, can be used to derive rainfall information. However, data availability is limited due to the lack of suitable data acquisition systems. We have developed and currently operate a custom data acquisition system for CML networks that is able to acquire the required data for a large number of CMLs in real time. This system is the basis for a future countrywide rainfall product derived from CML data.