Preprints
https://doi.org/10.5194/amt-2024-103
https://doi.org/10.5194/amt-2024-103
05 Aug 2024
 | 05 Aug 2024
Status: this preprint is currently under review for the journal AMT.

Cloud masks and cloud type classification using EarthCARE CPR and ATLID

Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh

Abstract. We develop the Japan Aerospace Exploration Agency (JAXA) level 2 cloud mask and cloud type classification algorithms for the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE), a joint JAXA and European Space Agency (ESA) satellite mission. Cloud profiling radar (CPR)-only, atmospheric lidar (ATLID)-only, and combined CPR–ATLID algorithms for the cloud mask and cloud particle type are described. The algorithms are developed and evaluated using ground-based data, space-borne data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and simulation data from a Japanese global cloud-resolving model, the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with Joint simulator. The algorithms are based on our algorithms for CloudSat and CALIPSO with several improvements. The cloud particle type for ATLID is derived from an attenuation–depolarization diagram trained using 355 nm multiple-field-of-view multiple-scattering polarization lidar and changing the diagram from that developed for CALIPSO. The retrieved cloud particle phases (ice, water, and mixed phases) and those reported in the NICAM output data are compared. We found that the agreement for CPR-only, ATLID-only, and combined CPR–ATLID algorithms averaged roughly 80 %, 85 %, and 80 %, respectively, for 15 different cloud scenes corresponding to two EarthCARE orbits.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2024-103', Anonymous Referee #1, 23 Aug 2024
  • RC2: 'Comment on amt-2024-103', Anonymous Referee #2, 12 Oct 2024
  • RC3: 'Comment on amt-2024-103', Anonymous Referee #3, 18 Oct 2024
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh

Viewed

Total article views: 513 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
304 135 74 513 16 10
  • HTML: 304
  • PDF: 135
  • XML: 74
  • Total: 513
  • BibTeX: 16
  • EndNote: 10
Views and downloads (calculated since 05 Aug 2024)
Cumulative views and downloads (calculated since 05 Aug 2024)

Viewed (geographical distribution)

Total article views: 509 (including HTML, PDF, and XML) Thereof 509 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Dec 2024
Download
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.