Articles | Volume 10, issue 5
https://doi.org/10.5194/amt-10-1911-2017
https://doi.org/10.5194/amt-10-1911-2017
Research article
 | 
31 May 2017
Research article |  | 31 May 2017

Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species

Caroline C. Womack, J. Andrew Neuman, Patrick R. Veres, Scott J. Eilerman, Charles A. Brock, Zachary C. J. Decker, Kyle J. Zarzana, William P. Dube, Robert J. Wild, Paul J. Wooldridge, Ronald C. Cohen, and Steven S. Brown

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Caroline Womack on behalf of the Authors (24 Mar 2017)  Author's response   Manuscript 
ED: Publish as is (19 Apr 2017) by Dwayne Heard
AR by Caroline Womack on behalf of the Authors (26 Apr 2017)
Download
Short summary
The accurate detection of reactive nitrogen species (NOy) is key to understanding tropospheric ozone production. Typically, NOy is detected by thermal conversion to NO2, followed by NO2 detection. Here, we assess the conversion efficiency of several NOy species to NO2 in a thermal dissociation cavity ring-down spectrometer and discuss how this conversion efficiency is affected by certain experimental conditions, such as oven residence time, and interferences from non-NOy species.