Articles | Volume 10, issue 6
https://doi.org/10.5194/amt-10-2239-2017
https://doi.org/10.5194/amt-10-2239-2017
Research article
 | 
13 Jun 2017
Research article |  | 13 Jun 2017

Evaluation of radar reflectivity factor simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems

Emmanuel Fontaine, Delphine Leroy, Alfons Schwarzenboeck, Julien Delanoë, Alain Protat, Fabien Dezitter, Alice Grandin, John Walter Strapp, and Lyle Edward Lilie

Related authors

Statistical analysis of ice microphysical properties in tropical mesoscale convective systems derived from cloud radar and in situ microphysical observations
Emmanuel Fontaine, Alfons Schwarzenboeck, Delphine Leroy, Julien Delanoë, Alain Protat, Fabien Dezitter, John Walter Strapp, and Lyle Edward Lilie
Atmos. Chem. Phys., 20, 3503–3553, https://doi.org/10.5194/acp-20-3503-2020,https://doi.org/10.5194/acp-20-3503-2020, 2020
Short summary
Controls on phase composition and ice water content in a convection-permitting model simulation of a tropical mesoscale convective system
Charmaine N. Franklin, Alain Protat, Delphine Leroy, and Emmanuel Fontaine
Atmos. Chem. Phys., 16, 8767–8789, https://doi.org/10.5194/acp-16-8767-2016,https://doi.org/10.5194/acp-16-8767-2016, 2016
Short summary
Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils
E. Fontaine, A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat
Atmos. Chem. Phys., 14, 11367–11392, https://doi.org/10.5194/acp-14-11367-2014,https://doi.org/10.5194/acp-14-11367-2014, 2014

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations
Flor Vanessa Maciel, Minghui Diao, and Ching An Yang
Atmos. Meas. Tech., 17, 4843–4861, https://doi.org/10.5194/amt-17-4843-2024,https://doi.org/10.5194/amt-17-4843-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Revealing halos concealed by cirrus clouds
Yuji Ayatsuka
Atmos. Meas. Tech., 17, 3739–3750, https://doi.org/10.5194/amt-17-3739-2024,https://doi.org/10.5194/amt-17-3739-2024, 2024
Short summary
In situ observations of supercooled liquid water clouds over Dome C, Antarctica by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-8,https://doi.org/10.5194/amt-2024-8, 2024
Revised manuscript accepted for AMT
Short summary
Quantifying riming from airborne data during the HALO-(AC)3 campaign
Nina Maherndl, Manuel Moser, Johannes Lucke, Mario Mech, Nils Risse, Imke Schirmacher, and Maximilian Maahn
Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024,https://doi.org/10.5194/amt-17-1475-2024, 2024
Short summary

Cited articles

Alcoba, M., Gosset, M., Kacou, M., Cazenave, F., and Fontaine, E.: Characterization of Hydrometeors in Sahelian Convective Systems with an Xband radar and comparison with in situ measurements. Part 2: a simple bright band method to infer the density of icy hydrometeors, J. Appl. Meteor. Climatol., https://doi.org/10.1175/JAMC-D-15-0014.1, 2015.
Brown, P. R. A. and Francis, P. N.: Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe, J. Atmos. Ocean. Technol., 12, 410–414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2, 1995.
Davison, C., Mac Leod, J. D., Strapp, J. W., and Buttsworth, D. R.: “Isokinetic Total Water Content Probe in a Naturally Aspirating Configuration: Initial Aerodynamic Design and Testing”, 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
Davison, C. R., Strapp, J. W., Lilie, L., Ratvasky, T. P., and Dumont, C.: Isokinetic TWC Evaporator Probe: Calculations and Systemic Error Analysis, 8th AIAA Atmospheric and Space Environments Conference, June 17, 2016, Washington, DC, AIAA 2016-4060, 2016.
Dezitter, F., Grandin, A., Brenguier, J.-L., Hervy, F., Schlager, H., Villedieu, P., and Zalamansky, G.: “HAIC – High Altitude Ice Crystals”, in: 5th AIAA Atmospheric and Space Environments Conference, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2013-2674, 2013.
Download
Short summary
In this study we evaluate a method to estimate cloud water content (CWC) knowing cloud reflectivity. Ice hydrometeors are replace by ice oblate spheroids to simulate their reflectivity. There is no assumption on the relation between mass and their size. Then, a broad range of CWCs are compared with direct measurements of CWC. The accuracy of the method is ~ ±32 %. This study is performed in areas of convective clouds where reflectivity and CWC are especially high, what makes it unique.