Articles | Volume 10, issue 7
https://doi.org/10.5194/amt-10-2517-2017
https://doi.org/10.5194/amt-10-2517-2017
Research article
 | 
19 Jul 2017
Research article |  | 19 Jul 2017

An assessment of the impact of ATMS and CrIS data assimilation on precipitation prediction over the Tibetan Plateau

Tong Xue, Jianjun Xu, Zhaoyong Guan, Han-Ching Chen, Long S. Chiu, and Min Shao

Viewed

Total article views: 2,671 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,679 891 101 2,671 107 114
  • HTML: 1,679
  • PDF: 891
  • XML: 101
  • Total: 2,671
  • BibTeX: 107
  • EndNote: 114
Views and downloads (calculated since 27 Feb 2017)
Cumulative views and downloads (calculated since 27 Feb 2017)

Viewed (geographical distribution)

Total article views: 2,671 (including HTML, PDF, and XML) Thereof 2,612 with geography defined and 59 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Dec 2024
Download
Short summary
In this study, we used diagnostic methods to analyze the impact of data assimilation on the monthly precipitation distribution over the Tibetan Plateau and then focused on one heavy-rainfall case study that occurred from 3 to 6 July 2015. It is conspicuous that the ATMS assimilation showed better performance than the control experiment, conventional assimilation, and CrIS assimilation. Overall, the satellite data assimilation can enhance the WRF-ARW model’s ability to predict precipitation.