Articles | Volume 10, issue 7
https://doi.org/10.5194/amt-10-2517-2017
https://doi.org/10.5194/amt-10-2517-2017
Research article
 | 
19 Jul 2017
Research article |  | 19 Jul 2017

An assessment of the impact of ATMS and CrIS data assimilation on precipitation prediction over the Tibetan Plateau

Tong Xue, Jianjun Xu, Zhaoyong Guan, Han-Ching Chen, Long S. Chiu, and Min Shao

Related authors

THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS
Q. Liu, L. S Chiu, and X. Hao
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4-W2, 183–191, https://doi.org/10.5194/isprs-annals-IV-4-W2-183-2017,https://doi.org/10.5194/isprs-annals-IV-4-W2-183-2017, 2017

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer
Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-868,https://doi.org/10.5194/egusphere-2024-868, 2024
Short summary

Cited articles

Bormann, N., Fouilloux, A., and Bell, W.: Evaluation and assimilation of ATMS data in the ECMWF system, J. Geophys. Res.-Atmos., 118, 12970–12980, https://doi.org/10.1002/2013JD020325, 2013.
Chambon, P., Zhang, S. Q., Hou, A. Y., Zupanski, M., and Cheung, S.: Assessing the impact of preGPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system, Q. J. Roy. Meteor. Soc., 140, 1219–1235, 2014.
Chen, Y., Ji, L., and Shen, R.: The numerical experiments on dynamic forcing by the Tibetan Plateau for various zonal flows, Adv. Atmos. Sci., 2, 189–199, 1985.
Derber, J. C. and Wu, W. S.: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system, Mon. Weather Rev., 126, 2287–2299, 1998.
Developmental Testbed Center: Gridpoint Statistical Interpolation Advanced User's Guide Version 3.5, 119 pp., available at: http://www.dtcenter.org/com-GSI/users.v3.5/docs/index.php (last access: 14 July 2017), 2016.
Download
Short summary
In this study, we used diagnostic methods to analyze the impact of data assimilation on the monthly precipitation distribution over the Tibetan Plateau and then focused on one heavy-rainfall case study that occurred from 3 to 6 July 2015. It is conspicuous that the ATMS assimilation showed better performance than the control experiment, conventional assimilation, and CrIS assimilation. Overall, the satellite data assimilation can enhance the WRF-ARW model’s ability to predict precipitation.