Articles | Volume 10, issue 7
https://doi.org/10.5194/amt-10-2595-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-10-2595-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Improved observations of turbulence dissipation rates from wind profiling radars
Katherine McCaffrey
CORRESPONDING AUTHOR
University of Colorado, Cooperative Institute for Research in Environmental
Sciences at the NOAA Earth System Research Laboratory, Physical Sciences Division, 325 Broadway, Boulder, CO 80305-3337, USA
NOAA Earth System Research Laboratory, Physical Sciences Division, 325 Broadway, Boulder, CO 80305-3337, USA
Laura Bianco
University of Colorado, Cooperative Institute for Research in Environmental
Sciences at the NOAA Earth System Research Laboratory, Physical Sciences Division, 325 Broadway, Boulder, CO 80305-3337, USA
NOAA Earth System Research Laboratory, Physical Sciences Division, 325 Broadway, Boulder, CO 80305-3337, USA
James M. Wilczak
NOAA Earth System Research Laboratory, Physical Sciences Division, 325 Broadway, Boulder, CO 80305-3337, USA
Related authors
Katherine McCaffrey, Laura Bianco, Paul Johnston, and James M. Wilczak
Atmos. Meas. Tech., 10, 999–1015, https://doi.org/10.5194/amt-10-999-2017, https://doi.org/10.5194/amt-10-999-2017, 2017
Short summary
Short summary
Using an optimized turbulence mode of two wind profiling radars (449 MHz and 915 MHz) during the XPIA field campaign, we present improved measurements of vertical velocity variance at the resolved and unresolved scales, using first and second Doppler spectral moments, and the total variance over all scales. Comparisons with sonic anemometers gave strong results, particularly during the daytime convective period. Profiles up to 2 km are possible with the 449 MHz WPR and 1 km from the 915 MHz WPR.
Katherine McCaffrey, Paul T. Quelet, Aditya Choukulkar, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, W. Alan Brewer, Mithu Debnath, Ryan Ashton, G. Valerio Iungo, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, https://doi.org/10.5194/amt-10-393-2017, 2017
Short summary
Short summary
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign, the wake and flow distortion from a 300-meter meteorological tower was identified using pairs of sonic anemometers mounted on opposite sides of the tower, as well as profiling and scanning lidars. Wind speed deficits up to 50% and TKE increases of 2 orders of magnitude were observed at wind directions in the wake, along with wind direction differences (flow deflection) outside of the wake.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Irina V. Djalalova, David D. Turner, Laura Bianco, James M. Wilczak, James Duncan, Bianca Adler, and Daniel Gottas
Atmos. Meas. Tech., 15, 521–537, https://doi.org/10.5194/amt-15-521-2022, https://doi.org/10.5194/amt-15-521-2022, 2022
Short summary
Short summary
In this paper we investigate the synergy obtained by combining active (radio acoustic sounding system – RASS) and passive (microwave radiometer) remote sensing observations to obtain temperature vertical profiles through a radiative transfer model. Inclusion of the RASS observations leads to more accurate temperature profiles from the surface to 5 km above ground, well above the maximum height of the RASS observations themselves (2000 m), when compared to the microwave radiometer used alone.
Caroline Draxl, Rochelle P. Worsnop, Geng Xia, Yelena Pichugina, Duli Chand, Julie K. Lundquist, Justin Sharp, Garrett Wedam, James M. Wilczak, and Larry K. Berg
Wind Energ. Sci., 6, 45–60, https://doi.org/10.5194/wes-6-45-2021, https://doi.org/10.5194/wes-6-45-2021, 2021
Short summary
Short summary
Mountain waves can create oscillations in low-level wind speeds and subsequently in the power output of wind plants. We document such oscillations by analyzing sodar and lidar observations, nacelle wind speeds, power observations, and Weather Research and Forecasting model simulations. This research describes how mountain waves form in the Columbia River basin and affect wind energy production and their impact on operational forecasting, wind plant layout, and integration of power into the grid.
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019, https://doi.org/10.5194/gmd-12-4803-2019, 2019
Short summary
Short summary
During the second Wind Forecast Improvement Project, improvements to the parameterizations were applied to the High Resolution Rapid Refresh model and its nested version. The impacts of the new parameterizations on the forecast of 80 m wind speeds and power are assessed, using sodars and profiling lidars observations for comparison. Improvements are evaluated as a function of the model’s initialization time, forecast horizon, time of the day, season, site elevation, and meteorological phenomena.
Luca Delle Monache, Stefano Alessandrini, Irina Djalalova, James Wilczak, and Jason C. Knievel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1214, https://doi.org/10.5194/acp-2017-1214, 2018
Preprint withdrawn
Short summary
Short summary
The authors demonstrate how the analog ensemble (AnEn) can efficiently generate deterministic and probabilistic forecasts of air quality. The method avoids the complexity and real-time computational expense of dynamical (i.e., model-based) ensembles. AnEn deterministic predictions have lower errors and are better correlated with observations. Probabilistic forecasts from AnEn are statistically consistent, reliable, and sharp, and they quantify the uncertainty of the underlying prediction.
Laura Bianco, Katja Friedrich, James M. Wilczak, Duane Hazen, Daniel Wolfe, Ruben Delgado, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1707–1721, https://doi.org/10.5194/amt-10-1707-2017, https://doi.org/10.5194/amt-10-1707-2017, 2017
Short summary
Short summary
XPIA is a study held in 2015 at NOAA's Boulder Atmospheric Observatory facility, aimed at assessing remote-sensing capabilities for wind energy applications. We use well-defined reference systems to validate temperature retrieved by two microwave radiometers (MWRs) and virtual temperature measured by wind profiling radars with radio acoustic sounding systems (RASSs). Water vapor density and relative humidity by the MWRs were also compared with similar measurements from the reference systems.
Rob K. Newsom, W. Alan Brewer, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1229–1240, https://doi.org/10.5194/amt-10-1229-2017, https://doi.org/10.5194/amt-10-1229-2017, 2017
Short summary
Short summary
Doppler lidars are remote sensing instruments that use infrared light to measure wind velocity in the lowest 2 to 3 km of the atmosphere. Quantifying the uncertainty in these measurements is crucial for applications ranging from wind resource assessment to model data assimilation. In this study, we evaluate three methods for estimating the random uncertainty by comparing the lidar wind measurements with nearly collocated in situ wind measurements at multiple levels on a tall tower.
Mithu Debnath, Giacomo Valerio Iungo, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Scott Gunter, Julie K. Lundquist, John L. Schroeder, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 1215–1227, https://doi.org/10.5194/amt-10-1215-2017, https://doi.org/10.5194/amt-10-1215-2017, 2017
Short summary
Short summary
The XPIA experiment was conducted in 2015 at the Boulder Atmospheric Observatory to estimate capabilities of various remote-sensing techniques for the characterization of complex atmospheric flows. Among different tests, XPIA provided the unique opportunity to perform simultaneous virtual towers with Ka-band radars and scanning Doppler wind lidars. Wind speed and wind direction were assessed against lidar profilers and sonic anemometer data, highlighting a good accuracy of the data retrieved.
Katherine McCaffrey, Laura Bianco, Paul Johnston, and James M. Wilczak
Atmos. Meas. Tech., 10, 999–1015, https://doi.org/10.5194/amt-10-999-2017, https://doi.org/10.5194/amt-10-999-2017, 2017
Short summary
Short summary
Using an optimized turbulence mode of two wind profiling radars (449 MHz and 915 MHz) during the XPIA field campaign, we present improved measurements of vertical velocity variance at the resolved and unresolved scales, using first and second Doppler spectral moments, and the total variance over all scales. Comparisons with sonic anemometers gave strong results, particularly during the daytime convective period. Profiles up to 2 km are possible with the 449 MHz WPR and 1 km from the 915 MHz WPR.
Mithu Debnath, G. Valerio Iungo, Ryan Ashton, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Julie K. Lundquist, William J. Shaw, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 431–444, https://doi.org/10.5194/amt-10-431-2017, https://doi.org/10.5194/amt-10-431-2017, 2017
Short summary
Short summary
Triple RHI scans were performed with three simultaneous scanning Doppler wind lidars and assessed with lidar profiler and sonic anemometer data. This test is part of the XPIA experiment. The scan strategy consists in two lidars performing co-planar RHI scans, while a third lidar measures the transversal velocity component. The results show that horizontal velocity and wind direction are measured with good accuracy, while the vertical velocity is typically measured with a significant error.
Katherine McCaffrey, Paul T. Quelet, Aditya Choukulkar, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, W. Alan Brewer, Mithu Debnath, Ryan Ashton, G. Valerio Iungo, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, https://doi.org/10.5194/amt-10-393-2017, 2017
Short summary
Short summary
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign, the wake and flow distortion from a 300-meter meteorological tower was identified using pairs of sonic anemometers mounted on opposite sides of the tower, as well as profiling and scanning lidars. Wind speed deficits up to 50% and TKE increases of 2 orders of magnitude were observed at wind directions in the wake, along with wind direction differences (flow deflection) outside of the wake.
Aditya Choukulkar, W. Alan Brewer, Scott P. Sandberg, Ann Weickmann, Timothy A. Bonin, R. Michael Hardesty, Julie K. Lundquist, Ruben Delgado, G. Valerio Iungo, Ryan Ashton, Mithu Debnath, Laura Bianco, James M. Wilczak, Steven Oncley, and Daniel Wolfe
Atmos. Meas. Tech., 10, 247–264, https://doi.org/10.5194/amt-10-247-2017, https://doi.org/10.5194/amt-10-247-2017, 2017
Short summary
Short summary
This paper discusses trade-offs among various wind measurement strategies using scanning Doppler lidars. It is found that the trade-off exists between being able to make highly precise point measurements versus covering large spatial extents. The highest measurement precision is achieved when multiple lidar systems make wind measurements at one point in space, while highest spatial coverage is achieved through using single lidar scanning measurements and using complex retrieval techniques.
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar
Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Efficient collocation of global navigation satellite system radio occultation soundings with passive nadir microwave soundings
Analysis of 2D airglow imager data with respect to dynamics using machine learning
Estimation of extreme precipitation events in Estonia and Italy using dual-polarization weather radar quantitative precipitation estimations
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of the 11-year solar cycle-, QBO-induced and other variations
Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Observations of anomalous propagation over waters near Sweden
Irradiance and cloud optical properties from solar photovoltaic systems
GNSS radio occultation excess phase processing for climate applications including uncertainty estimation
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning
Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): feasibility and requirements
On the peculiar polarimetric signatures backscattered by a still or quasi-still wind turbine acquired by an X-band radar in stare mode at high temporal resolution (64 ms): preliminary investigations
An improved near-real-time precipitation retrieval for Brazil
Broadband Radiative Quantities for the EarthCARE Mission: The ACM-COM and ACM-RT Products
Radio frequency interference detection and mitigation in the DWD C-band weather radar network
Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign
Long-distance propagation of 162 MHz shipping information links associated with sporadic E
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
DeepPrecip: a deep neural network for precipitation retrievals
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
Adaptive thermal image velocimetry of spatial wind movement on landscapes using near-target infrared cameras
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hierarchical deconvolution for incoherent scatter radar data
An alternative cloud index for estimating downwelling surface solar irradiance from various satellite imagers in the framework of a Heliosat-V method
ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO)
On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind
Quantification of lightning-produced NOx over the Pyrenees and the Ebro Valley by using different TROPOMI-NO2 and cloud research products
Sensitivity analysis of attenuation in convective rainfall at X-band frequency using the mountain reference technique
A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements
Airborne measurements of directional reflectivity over the Arctic marginal sea ice zone
High-resolution typhoon precipitation integrations using satellite infrared observations and multisource data
Continuous temperature soundings at the stratosphere and lower mesosphere with a ground-based radiometer considering the Zeeman effect
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023, https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Short summary
Snow layer melting and melt pond formation on Arctic sea ice are important seasonal processes affecting the surface reflection and energy budget. Sea ice reflectivity was surveyed by airborne imaging spectrometers in May–June 2017. Adapted retrieval approaches were applied to find snow layer liquid water fraction, snow grain effective radius, and melt pond depth. The retrievals show the potential and limitations of spectral airborne imaging to map melting snow layer and melt pond properties.
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023, https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary
Short summary
This paper provides a new method to retrieve wind profiles from coherent Doppler lidar (CDL) measurements. It takes advantage of layer-to-layer correlation in wind profiles to provide continuous profiles of up to 3 km by filling in the gaps where the CDL signal is too small to retrieve reliable results by itself. Comparison with the current method and collocated radiosonde wind measurements showed excellent agreement with no degradation in results where the current method gives valid results.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Alex Meredith, Stephen Leroy, Lucy Halperin, and Kerri Cahoy
Atmos. Meas. Tech., 16, 3345–3361, https://doi.org/10.5194/amt-16-3345-2023, https://doi.org/10.5194/amt-16-3345-2023, 2023
Short summary
Short summary
We developed a new efficient algorithm leveraging orbital dynamics to collocate radio occultation soundings with microwave radiance soundings. This new algorithm is 99 % accurate and is much faster than traditional collocation-finding approaches. Speeding up collocation finding is useful for calibrating and validating microwave radiometers and for data assimilation into numerical weather prediction models. Our algorithm can also be used to predict collocation yield for new satellite missions.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Roberto Cremonini, Tanel Voormansik, Piia Post, and Dmitri Moisseev
Atmos. Meas. Tech., 16, 2943–2956, https://doi.org/10.5194/amt-16-2943-2023, https://doi.org/10.5194/amt-16-2943-2023, 2023
Short summary
Short summary
Extreme rainfall for a specific location is commonly evaluated when designing stormwater management systems. This study investigates the use of quantitative precipitation estimations (QPEs) based on polarimetric weather radar data, without rain gauge corrections, to estimate 1 h rainfall total maxima in Italy and Estonia. We show that dual-polarization weather radar provides reliable QPEs and effective estimations of return periods for extreme rainfall in climatologically homogeneous regions.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-61, https://doi.org/10.5194/amt-2023-61, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than ten years (2009–2020) at 47.42° N, 10.98° E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong with ~6 K / 100 sfu. A quasi-two-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has period of or below 24 months.
Wan Wu, Xu Liu, Liqiao Lei, Xiaozhen Xiong, Qiguang Yang, Qing Yue, Daniel K. Zhou, and Allen M. Larar
EGUsphere, https://doi.org/10.5194/egusphere-2023-879, https://doi.org/10.5194/egusphere-2023-879, 2023
Short summary
Short summary
We present a new operational physical retrieval algorithm that is used to retrieve atmospheric properties for each single field-of-view measurements of hyper-spectral IR sounders. The physical scheme includes cloud scattering calculation in its forward simulation part. The data product generated using this algorithm has advantage over traditional IR sounder data production algorithms in terms of improved spatial resolution and minimized error due to cloud contamination.
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-98, https://doi.org/10.5194/amt-2023-98, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
A data processing algorithm RainGRS Clim has been developed to work on precipitation accumulations such as daily or monthly totals. The algorithm makes the most of additional opportunities: access to high-quality data that are not operationally available and the greater efficiency of the algorithms for data quality control and merging on longer accumulations. Monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than accumulations generated operationally.
Vinícius Ludwig-Barbosa, Joel Rasch, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet Thuy Vu, and Jacob Christensen
Atmos. Meas. Tech., 16, 1849–1864, https://doi.org/10.5194/amt-16-1849-2023, https://doi.org/10.5194/amt-16-1849-2023, 2023
Short summary
Short summary
In this paper, the back-propagation method's capabilities and limitations regarding the location of irregularity regions in the ionosphere, e.g. equatorial plasma bubbles, are evaluated. The assessment was performed with simulations in which different scenarios were assumed. The results showed that the location estimate is possible if the amplitude of the ionospheric disturbance is stronger than the instrument noise level. Further, multiple patches can be located if regions are well separated.
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023, https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Short summary
The atmosphere can cause radar beams to bend more or less towards the ground. When the atmosphere differs from standard atmospheric conditions, the propagation is considered anomalous. Radars affected by anomalous propagation can observe ground clutter far beyond the radar horizon. Here, 4.5 years' worth of data from five operational Swedish weather radars are presented. Analyses of the data reveal a strong seasonal cycle and weaker diurnal cycle in ground clutter from across nearby waters.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-335, https://doi.org/10.5194/amt-2022-335, 2023
Preprint under review for AMT
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contains information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany was used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-28, https://doi.org/10.5194/amt-2023-28, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Atmosphere remote-sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For highest quality demands Wegener Center set up a rigorous system for processing the low level measurement data. This excess phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and cross-validated ensuring the capability to produce reliable long-term data records for climate applications.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023, https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023, https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
Short summary
This study aims to verify that a partly defective hyperspectral measurement can be successfully reproduced with concise machine learning models coupled with principal component analysis. Evaluation of the approach is performed with radiances and retrieval results of ozone and cloud properties. Considering that GEMS is the first geostationary UV–VIS hyperspectral spectrometer, we expect our findings can be introduced further to similar geostationary environmental instruments to be launched soon.
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022, https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
Short summary
This study presents the new vertically pointing birdbath scan of the German C-band radar network, which provides high-resolution profiles of precipitating clouds above all DWD weather radars since the spring of 2021. Our AI-based postprocessing method for filtering and analyzing the recorded radar data offers a unique quantitative view into a wide range of precipitation events from snowfall over stratiform rain to intense frontal showers and will be used to complement DWD's operational services.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-316, https://doi.org/10.5194/amt-2022-316, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
A still wind turbine observed with a fixed pointing radar antenna shows peculiar and stable polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The reflectivity at both horizontal and vertical polarization was also quite persistent. The standard deviation of the differential backscattering phase shift was as small as 3.0 deg.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933, https://doi.org/10.5194/amt-15-6907-2022, https://doi.org/10.5194/amt-15-6907-2022, 2022
Short summary
Short summary
We used methods from the field of artificial intelligence to train an algorithm to estimate rain from satellite observations. In contrast to other methods, our algorithm not only estimates rain, but also the uncertainty of the estimate. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based measurements of rain more accurate and reliable.
Jason Neil Steven Cole, Howard W. Barker, Zhipeng Qu, Najda Villefranque, and Mark W. Shephard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-304, https://doi.org/10.5194/amt-2022-304, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Measurements from the EarthCARE satellite mission will be used to retrieve profiles of cloud and aerosol properties. These retrievals are combined with auxiliary information about surface properties and atmospheric state, e.g., temperature and water vapor. This information allows computation of solar and thermal radiative fluxes and radiances for small domains. These computations can then be compared with co-incident radiometer observations to continually assess EarthCARE retrievals.
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
Atmos. Meas. Tech., 15, 6625–6642, https://doi.org/10.5194/amt-15-6625-2022, https://doi.org/10.5194/amt-15-6625-2022, 2022
Short summary
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Alex T. Chartier, Thomas R. Hanley, and Daniel J. Emmons
Atmos. Meas. Tech., 15, 6387–6393, https://doi.org/10.5194/amt-15-6387-2022, https://doi.org/10.5194/amt-15-6387-2022, 2022
Short summary
Short summary
This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022, https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
Short summary
For atmospheric science and weather prediction, it is important to make water vapor measurements in real time. A low-cost lidar instrument has been developed by Montana State University and the National Center for Atmospheric Research. We developed an advanced signal-processing method to extend the scientific capability of the lidar instrument. With the new method we show that the maximum altitude at which the MPD can make water vapor measurements can be extended up to 8 km.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022, https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Short summary
The Global Precipitation Measurement mission is an international satellite mission providing regular global rain measurements. We present two newly developed machine-learning-based implementations of one of the algorithms responsible for turning the satellite observations into rain measurements. We show that replacing the current algorithm with a neural network improves the accuracy of the measurements. A neural network that also makes use of spatial information unlocks further improvements.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke
Atmos. Meas. Tech., 15, 4531–4545, https://doi.org/10.5194/amt-15-4531-2022, https://doi.org/10.5194/amt-15-4531-2022, 2022
Short summary
Short summary
This investigation demonstrates how useful ionospheric parameters can be extracted from existing high-frequency radars that are used for oceanographic research. The methodology presented can be used by scientists and radio amateurs to understand ionospheric dynamics.
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022, https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Short summary
A total least squares (TLS) regression is used to optimally estimate linear speed-dependent biases between Aeolus Level-2B winds and short-term (6 h) forecasts of NOAA’s FV3GFS. The winds for 1–7 September 2019 are examined. Clear speed-dependent biases for both Mie and Rayleigh winds are found, particularly in the tropics and Southern Hemisphere. Use of the TLS correction improves the forecast of the 26–28 November 2019 winter storm over the USA.
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022, https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022, https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
Short summary
Solar radiation received by the Earth's surface is valuable information for various fields like the photovoltaic industry or climate research. Pictures taken from satellites can be used to estimate the solar radiation from cloud reflectivity. Two issues for a good estimation are different instrumentations and orbits. We modify a widely used method that is today only used on geostationary satellites, so it can be applied on instruments on different orbits and with different sensitivities.
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022, https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Short summary
The Micro Rain Radar PRO (MRR-PRO) is a meteorological radar, with a relevant set of features for deployment in remote locations. We developed an algorithm, named ERUO, for the processing of its measurements of snowfall. The algorithm addresses typical issues of the raw spectral data, such as interference lines, but also improves the quality and sensitivity of the radar variables. ERUO has been evaluated over four different datasets collected in Antarctica and in the Swiss Jura.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Guy Delrieu, Anil Kumar Khanal, Frédéric Cazenave, and Brice Boudevillain
Atmos. Meas. Tech., 15, 3297–3314, https://doi.org/10.5194/amt-15-3297-2022, https://doi.org/10.5194/amt-15-3297-2022, 2022
Short summary
Short summary
The RadAlp experiment aims at improving quantitative precipitation estimation in the Alps thanks to X-band polarimetric radars and in situ measurements deployed in Grenoble, France. We revisit the physics of propagation and attenuation of microwaves in rain. We perform a generalized sensitivity analysis in order to establish useful parameterization for attenuation corrections. Originality lies in the use of otherwise undesired mountain returns for constraining the considered physical model.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Sebastian Becker, André Ehrlich, Evelyn Jäkel, Tim Carlsen, Michael Schäfer, and Manfred Wendisch
Atmos. Meas. Tech., 15, 2939–2953, https://doi.org/10.5194/amt-15-2939-2022, https://doi.org/10.5194/amt-15-2939-2022, 2022
Short summary
Short summary
Airborne radiation measurements are used to characterize the solar directional reflection of a mixture of Arctic sea ice and open-ocean surfaces in the transition zone between both surface types. The mixture reveals reflection properties of both surface types. It is shown that the directional reflection of the mixture can be reconstructed from the directional reflection of the individual surfaces, accounting for the special conditions present in the transition zone.
You Zhao, Chao Liu, Di Di, Ziqiang Ma, and Shihao Tang
Atmos. Meas. Tech., 15, 2791–2805, https://doi.org/10.5194/amt-15-2791-2022, https://doi.org/10.5194/amt-15-2791-2022, 2022
Short summary
Short summary
A typhoon is a high-impact atmospheric phenomenon that causes most significant socioeconomic damage, and its precipitation observation is always needed for typhoon characteristics and disaster prevention. This study developed a typhoon precipitation fusion method to combine observations from satellite radiometers, rain gauges and reanalysis to provide much improved typhoon precipitation datasets.
Witali Krochin, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022, https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Short summary
This study leverages atmospheric temperature measurements performed with a ground-based radiometer making use of data that was collected during a 4-year observational campaign applying a new retrieval algorithm that improves the maximal altitude range from 45 to 55 km. The measurements are validated against two independent data sets, MERRA2 reanalysis data and the meteorological analysis of NAVGEM-HA.
Cited articles
Angevine, W. M., Doviak, R. J., and Sorbjan, Z.: Remote sensing of vertical velocity variance and surface heat flux in a convective boundary layer, J. Appl. Meteorol., 33, 977–983, 1994.
Champagne, F. H.: The fine-scale structure of the turbulent velocity field, J. Fluid Mech., 86, 67–108, 1978.
Cohn, S. A.: Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques, J. Atmos. Ocean. Tech., 12, 85–95, 1995.
Dehghan, A., Hocking, W. K., and Srinivasan, R.: Comparisons between multiple in-situ aircraft turbulence measurements and radar in the troposphere, J. Atmos. Sol.-Terr. Phy., 118, 64–77, 2014.
Frehlich, R., Meillier, Y., Jensen, M. L., and Balsley, B.: Turbulence measurements with the CIRES tethered lifting system during CASES-99: Calibration and spectral analysis of temperature and velocity, J. Atmos. Sci., 60, 2487–2495, 2003.
Frisch, A. and Clifford, S.: A study of convection capped by a stable layer using Doppler radar and acoustic echo sounders, J. Atmos. Sci., 31, 1622–1628, 1974.
Gaffard, C., Bianco, L., Klaus, V., and Matabuena, M.: Evaluation of moments calculated from wind profiler spectra: A comparison between five different processing techniques, Meteorol. Z., 15, 73–85, 2006.
Gossard, E.: Radar research on the atmospheric boundary layer, Radar in Meteorology, 477–527, 1990.
Gossard, E., Wolfe, D., Moran, K., Paulus, R., Anderson, K., and Rogers, L.: Measurement of clear-air gradients and turbulence properties with radar wind profilers, J. Atmos. Ocean. Tech., 15, 321–342, 1998.
Hocking, W. K.: Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review, Radio Sci., 20, 1403–1422, 1985.
Jacoby-Koaly, S., Campistron, B., Bernard, S., Bénech, B., Ardhuin-Girard, F., Dessens, J., Dupont, E., and Carissimo, B.: Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements, Bound.-Lay. Meteorol., 103, 361–389, 2002.
Jordan, J. R., Lataitis, R. J., and Carter, D. A.: Removing ground and intermittent clutter contamination from wind profiler signals using wavelet transforms, J. Atmos. Ocean. Tech., 14, 1280–1297, 1997.
Kaimal, J.: Sonic anemometer measurement of atmospheric turbulence, in: Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows, 551–565, Springer, 1978.
Kaimal, J., Wyngaard, J., and Haugen, D.: Deriving power spectra from a three-component sonic anemometer, J. Appl. Meteorol., 7, 827–837, 1968.
Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, in: Dokl. Akad. Nauk SSSR, 30, 299–303, available at: http://www.jstor.org/stable/pdf/51980.pdf, 1941.
Labbitt, M.: Coordinated radar and aircraft observations of turbulence Rep, ATC-108, 40 Lincoln Lab., Mass. Inst. of Technol., Cambridge, 1981.
Lehmann, V.: Optimal Gabor-frame-expansion-based intermittent-clutter-filtering method for radar wind profiler, J. Atmos. Ocean. Tech., 29, 141–158, 2012.
Lemone, M. A. and Pennell, W. T.: A comparison of turbulence measurements from aircraft, J. Appl. Meteorol., 19, 1420–1437, 1980.
Lundquist, J. K., Wliczak, J. M., Ashton, R., Bianco, L., Brewer, W. A., Choukulkar, A., Clifton, A. J., Debnath, M., Delgado, R., Friedrich, K., Gunter, S., Hamidi, A., Iungo, G. V., Kaushik, A., Kosovik, B., Langan, P., Lass, A., Lavin, E., Lee, J. C.-Y., Newsom, R. K., Noone, D. C., Oncley, S. P., Quelet, P. T., Sandberg, S. P., Schroeder, J. L., Shaw, W. J., Sparling, L., St. Martin, C., St. Pe, A., Strobach, E., Tay, K., Vanderwende, B. J., Weickmann, A., Wolfe, D., and Worsnop, R.: Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: the XPIA field campaign, B. Am. Meteorol. Soc., 98, 289–314, https://doi.org/10.1175/BAMS-D-15-00151.1, 2016.
McCaffrey, K., Bianco, L., Johnston, P., and Wilczak, J. M.: A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers, Atmos. Meas. Tech., 10, 999–1015, https://doi.org/10.5194/amt-10-999-2017, 2017.
McCaffrey, K., Quelet, P. T., Choukulkar, A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., Brewer, W. A., Debnath, M., Ashton, R., Iungo, G. V., and Lundquist, J. K.: Identification of tower-wake distortions using sonic anemometer and lidar measurements, Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, 2017.
Nastrom, G.: Doppler radar spectral width broadening due to beamwidth and wind shear, Annales Geophysicae, 15, 786–796, Springer, 1997.
Nastrom, G. and Eaton, F.: Turbulence eddy dissipation rates from radar observations at 5–20 km at White Sands Missile Range, New Mexico, J. Geophys. Res.-Atmos., 102, 19495–19505, 1997.
Nicholls, S.: Measurements of turbulence by an instrumented aircraft in a convective atmospheric boundary layer over the sea, Q. J. Roy. Meteor. Soc., 104, 653–676, 1978.
Oncley, S. P., Friehe, C. A., Larue, J. C., Businger, J. A., Itsweire, E. C., and Chang, S. S.: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions, J. Atmos. Sci., 53, 1029–1044, 1996.
Ottersten, H., Hardy, K. R., and Little, C. G.: Radar and sodar probing of waves and turbulence in statically stable clear-air layers, Bound.-Lay. Meteorol., 4, 47–89, 1973.
Piper, M.: The effects of a frontal passage on fine-scale nocturnal boundary layer turbulence, PhD thesis, University of Colorado, 2001.
Riddle, A. and Angevine, W.: Ground clutter removal from profiler spectra, in: Solar-Terrestrial Energy Program, 1, p. 418, 1991.
Riddle, A. C., Hartten, L. M., Carter, D. A., Johnston, P. E., and Williams, C. R.: A minimum threshold for wind profiler signal-to-noise ratios, J. Atmos. Ocean. Tech., 29, 889–895, 2012.
Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based wind lidars, Atmos. Meas. Tech., 6, 3147–3167, https://doi.org/10.5194/amt-6-3147-2013, 2013.
Shaw, W. J. and LeMone, M. A.: Turbulence dissipation rate measured by 915 MHz wind profiling radars compared with in-situ tower and aircraft data, in: 12th Symposium on Meteorological Observations and Instrumentation, American Meteorological Society, California, available at: https://ams.confex.com/ams/pdfpapers/58647.pdf, 2003.
Smalikho, I. and Banakh, V.: Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar – Part I: Algorithm of data processing, Atmos. Ocean. Opt., 26, 404–410, 2013.
Tennekes, H. and Lumley, J. L.: A first course in turbulence, MIT press, 1972.
White, A., Lataitis, R., and Lawrence, R.: Space and time filtering of remotely sensed velocity turbulence, J. Atmos. Ocean. Tech., 16, 1967–1972, 1999.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, Bound.-Lay. Meteorol., 99, 127–150, 2001.
Wyngaard, J. and Clifford, S.: Taylor's hypothesis and high-frequency turbulence spectra, J. Atmos. Sci., 34, 922–929, 1977.
Yang, B., Qian, Y., Berg, L. K., Ma, P.-L., Wharton, S., Bulaevskaya, V., Yan, H., Hou, Z., and Shaw, W. J.: Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model, Bound.-Lay. Meteorol., 162, 117–142, 10.1007/s10546-016-0185-2, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(9239 KB) - Full-text XML
Short summary
In this paper, we use two wind profiling radars, operating along side a highly instrumented 300 m meteorological tower, to observe turbulence dissipation rates in the planetary boundary layer from an optimized performance setup. Analysis of post-processing techniques, including spectral averaging and moments' calculation methods, shows the optimal parameters which result in good agreement, especially after bias corrections, with sonic anemometers on the tall tower.
In this paper, we use two wind profiling radars, operating along side a highly instrumented...