Articles | Volume 10, issue 9
Atmos. Meas. Tech., 10, 3325–3344, 2017
https://doi.org/10.5194/amt-10-3325-2017

Special issue: HD(CP)2 Observational Prototype Experiment (AMT/ACP...

Atmos. Meas. Tech., 10, 3325–3344, 2017
https://doi.org/10.5194/amt-10-3325-2017

Research article 12 Sep 2017

Research article | 12 Sep 2017

Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

Andreas Foth and Bernhard Pospichal

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andreas Foth on behalf of the Authors (10 Jul 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (11 Jul 2017) by Brian Kahn
RR by Anonymous Referee #1 (21 Jul 2017)
ED: Publish as is (24 Jul 2017) by Brian Kahn
Download
Short summary
We present a two-step retrieval that provides a continuous time series of water vapour profiles from ground-based remote sensing in a straightforward way to offer a broad application. The retrieval combines the Raman lidar mass mixing ratio and the microwave radiometer brightness temperature. Its application results in reliable water vapour profiles and error estimates also from within and above a cloud during all non-precipitating conditions.