Articles | Volume 10, issue 9
https://doi.org/10.5194/amt-10-3325-2017
https://doi.org/10.5194/amt-10-3325-2017
Research article
 | 
12 Sep 2017
Research article |  | 12 Sep 2017

Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

Andreas Foth and Bernhard Pospichal

Related authors

Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Ground- and ship-based microwave radiometer measurements during EUREC4A
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024,https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023,https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022,https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Assimilation of volcanic sulfur dioxide products from IASI and TROPOMI into the chemical transport model MOCAGE: case study of the 2021 La Soufrière Saint Vincent eruption with the March 2022 version of MOCAGE
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
Atmos. Meas. Tech., 18, 2659–2680, https://doi.org/10.5194/amt-18-2659-2025,https://doi.org/10.5194/amt-18-2659-2025, 2025
Short summary
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary
Robustness of atmospheric trace gas retrievals obtained from low-spectral-resolution Fourier transform infrared absorption spectra under variations of interferogram length
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025,https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary

Cited articles

Adam, M. and Venable, D. D.: Systematic distortions in water vapor mixing ratio and aerosol scattering ratio from a Raman lidar, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6750, 67500S, https://doi.org/10.1117/12.738205, 2007.
Adam, M., Demoz, B. B., Whiteman, D. N., Venable, D. D., Joseph, E., Gambacorta, A., Wei, J., Shephard, M. W., Miloshevich, L. M., Barnet, C. D., Herman, R. L., Fitzgibbon, J., and Connell, R.: Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign, J. Atmos. Ocean. Tech., 27, 42–60, https://doi.org/10.1175/2009JTECHA1331.1, 2010.
Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and Komppula, M.: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009.
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992.
Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D., Müller, D., and Schulz, O.: Vertical profiling of convective dust plumes in southern Morocco during SAMUM, Tellus B, 61, 340–353, https://doi.org/10.1111/j.1600-0889.2008.00384.x, 2009.
Download
Short summary
We present a two-step retrieval that provides a continuous time series of water vapour profiles from ground-based remote sensing in a straightforward way to offer a broad application. The retrieval combines the Raman lidar mass mixing ratio and the microwave radiometer brightness temperature. Its application results in reliable water vapour profiles and error estimates also from within and above a cloud during all non-precipitating conditions.
Share