Articles | Volume 10, issue 12
Atmos. Meas. Tech., 10, 4747–4759, 2017
https://doi.org/10.5194/amt-10-4747-2017
Atmos. Meas. Tech., 10, 4747–4759, 2017
https://doi.org/10.5194/amt-10-4747-2017

Research article 05 Dec 2017

Research article | 05 Dec 2017

Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

Rintaro Okamura et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (02 Nov 2017)  Author's response
ED: Publish as is (02 Nov 2017) by Alexander Kokhanovsky
Download
Short summary
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. Multi-pixel, multispectral approaches based on deep learning are proposed for retrieval of cloud optical thickness and droplet effective radius. A feasibility test shows that proposed retrieval methods are effective to obtain accurate cloud properties. Use of the convolutional neural network is effective to reduce 3-D radiative transfer effects.