Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 10, issue 12
Atmos. Meas. Tech., 10, 4747–4759, 2017
https://doi.org/10.5194/amt-10-4747-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 4747–4759, 2017
https://doi.org/10.5194/amt-10-4747-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Dec 2017

Research article | 05 Dec 2017

Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

Rintaro Okamura et al.

Related authors

Empirically-Derived Parameterizations of the Direct Aerosol Radiative Effect based on ORACLES Aircraft Observations
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-137,https://doi.org/10.5194/amt-2020-137, 2020
Preprint under review for AMT
Short summary
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-me Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary E. Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-449,https://doi.org/10.5194/acp-2020-449, 2020
Preprint under review for ACP
Short summary
Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic
Yohei Shinozuka, Meloë S. Kacenelenbogen, Sharon P. Burton, Steven G. Howell, Paquita Zuidema, Richard A. Ferrare, Samuel E. LeBlanc, Kristina Pistone, Stephen Broccardo, Jens Redemann, K. Sebastian Schmidt, Sabrina P. Cochrane, Marta Fenn, Steffen Freitag, Amie Dobracki, Michal Segal-Rosenheimer, and Connor J. Flynn
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1007,https://doi.org/10.5194/acp-2019-1007, 2020
Revised manuscript accepted for ACP
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019,https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
Shortwave Radiative Effect of Arctic Low-Level Clouds: Evaluation of Imagery-Derived Irradiance with Aircraft Observations
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-344,https://doi.org/10.5194/amt-2019-344, 2019
Revised manuscript accepted for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020,https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: feasibility study
Vladimir S. Kostsov, Dmitry V. Ionov, and Anke Kniffka
Atmos. Meas. Tech., 13, 4565–4587, https://doi.org/10.5194/amt-13-4565-2020,https://doi.org/10.5194/amt-13-4565-2020, 2020
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion
Yue Li, Bryan A. Baum, Andrew K. Heidinger, W. Paul Menzel, and Elisabeth Weisz
Atmos. Meas. Tech., 13, 4035–4049, https://doi.org/10.5194/amt-13-4035-2020,https://doi.org/10.5194/amt-13-4035-2020, 2020
Short summary
Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean
Florian Tornow, Carlos Domenech, Howard W. Barker, René Preusker, and Jürgen Fischer
Atmos. Meas. Tech., 13, 3909–3922, https://doi.org/10.5194/amt-13-3909-2020,https://doi.org/10.5194/amt-13-3909-2020, 2020
Short summary

Cited articles

Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York, 1983.
Cornet, C., Isaka, H., Guillemet, B., and Szczap, F.: Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study, J. Geophys. Res.-Atmos., 109, D12203, https://doi.org/10.1029/2003JD004186, 2004.
Cornet, C., Buriez, J.-C., Riédi, J., Isaka, H., and Guillemet, B.: Case study of inhomogeneous cloud parameter retrieval from MODIS data, Geophys. Res. Lett., 32, L13807, https://doi.org/10.1029/2005GL022791, 2005.
Evans, K. F., Marshak, A., and Várnai, T.: The potential for improved boundary layer cloud optical depth retrievals from the multiple directions of MISR, J. Atmos. Sci., 65, 3179–3196, 2008.
Faure, T., Isaka, H., and Guillemet, B.: Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: Feasibility study, Remote Sens. Environ., 77, 123–138, https://doi.org/10.1016/S0034-4257(01)00199-7, 2001.
Publications Copernicus
Download
Short summary
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. Multi-pixel, multispectral approaches based on deep learning are proposed for retrieval of cloud optical thickness and droplet effective radius. A feasibility test shows that proposed retrieval methods are effective to obtain accurate cloud properties. Use of the convolutional neural network is effective to reduce 3-D radiative transfer effects.
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in...
Citation