Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and Holmén,
K.: Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003. a, b
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for
bound constrained optimization, SIAM J. Sci. Comput., 16,
1190–1208, 1995. a
Calvetti, D. and Somersalo, E.: An Introduction to Bayesian Scientific
Computing: Ten Lectures on Subjective Computing, vol. 2, Springer Science &
Business Media, 2007. a
Chandrasekhar, S.: Radiative transfer, Dover, New York, 1960. a
Chatterjee, A., Michalak, A., Kahn, R., Paradise, S., Braverman, A., and
Miller, C.: A geostatistical data fusion technique for merging remote sensing
and ground-based observations of aerosol optical thickness, J. Geophys. Res.-Atmos., 115, D20207, https://doi.org/10.1029/2009JD013765,
2010. a
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R.,
Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K.,
Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates
and 25-year trends of the global burden of disease attributable to ambient
air pollution: an analysis of data from the Global Burden of Diseases Study
2015, Lancet, 389, 1907–1918, 2017. a
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E.,
Ferris Jr, B. G., and Speizer, F. E.: An association between air pollution
and mortality in six US cities, New Engl. J. Med., 329,
1753–1759, 1993. a
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian data
analysis, vol. 2, Chapman & Hall/CRC Boca Raton, FL, USA, 2014. a
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., and Munchak, L. A.: A surface reflectance scheme for retrieving aerosol optical
depth over urban surfaces in MODIS Dark Target retrieval algorithm, Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, 2016a. a
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., and Munchak, L. A.: A surface reflectance scheme for retrieving aerosol
optical depth over urban surfaces in MODIS Dark Target retrieval algorithm, Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, 2016b. a, b
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T.,
Lavenu, F., Jankowiak, I., and Smirnov, A: AERONET – A federated
instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, 1998. a
Hsu, N., Jeong, M.-J., Bettenhausen, C., Sayer, A., Hansell, R., Seftor, C.,
Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol retrieval algorithm:
The second generation, J. Geophys. Res.-Atmos., 118,
9296–9315, 2013. a
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Aerosol properties
over bright-reflecting source regions, IEEE T. Geosci. Remote, 42, 557–569, 2004. a
Hyer, E. J., Reid, J. S., and Zhang, J.: An over-land aerosol optical depth data set for data assimilation by filtering,
correction, and aggregation of MODIS Collection 5 optical depth retrievals, Atmos. Meas. Tech., 4, 379–408, https://doi.org/10.5194/amt-4-379-2011, 2011. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a
Kaipio, J. and Kolehmainen, V.: Approximate marginalization over modeling
errors and uncertainties in inverse problems, in: Bayesian Theory and
Applications, edited by: Damien, P., Dellaportas, P., Polson, N., and
Stephens, D., Oxford University Press, 644–672, 2013. a, b
Kaipio, J. and Somersalo, E.: Statistical and computational inverse problems,
Springer, New York, 2005. a
Kaipio, J. and Somersalo, E.: Statistical inverse problems: discretization,
model reduction and inverse crimes, J. Comput. Appl. Math., 198, 493–504, 2007. a
Kaufman, Y., Tanré, D., Remer, L. A., Vermote, E., Chu, A., and Holben, B.:
Operational remote sensing of tropospheric aerosol over land from EOS
moderate resolution imaging spectroradiometer, J. Geophys. Res.-Atmos., 102, 17051–17067, 1997a. a
Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B.-C., Li, R.-R., and Flynn,
L.: The MODIS 2.1-um channel-correlation with visible reflectance for use in
remote sensing of aerosol, IEEE T. Geosci. Remote, 35, 1286–1298, 1997b. a
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols in
the climate system, Nature, 419, 215–223, 2002. a
Kinne, S., O'Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast,
S., Giorgetta, M., Eck, T. F., and Stevens, B.: MAC-v1: A new global aerosol
climatology for climate studies, J. Adv. Model. Earth Sy., 5, 704–740, https://doi.org/10.1002/jame.20035, 2013. a
Kolehmainen, V., Tarvainen, T., Arridge, S. R., and Kaipio, J. P.:
Marginalization of uninteresting distributed parameters in inverse
problems-application to diffuse optical tomography, Int. J. Uncertain. Quan., 1, 1–17, 2011. a, b
Lee, T. Y. and Kaufman, Y. J.: Non-Lambertian effects on remote sensing of
surface reflectance and vegetation index, IEEE T. Geosci. Remote, GE-24, 699–708, 1986. a
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS
aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013. a, b, c, d
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties over
land from inversion of Moderate Resolution Imaging Spectroradiometer spectral
reflectance, J. Geophys. Res.-Atmos., 112, D13211, https://doi.org/10.1029/2006JD007811, 2007. a
Lipponen, A.: Bayesian Aerosol Retrieval algorithm for MODIS aerosol
retrieval over land, version 1.0, https://doi.org/10.5281/zenodo.1182939, 2018.
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., and Korkin, S.: Multiangle
implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis
and look-up tables, J. Geophys. Res.-Atmos., 116, D03210, https://doi.org/10.1029/2010JD014985,
2011a. a
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R.,
and Reid, J.: Multiangle implementation of atmospheric correction (MAIAC): 2.
Aerosol algorithm, J. Geophys. Res.-Atmos., 116, D03211, https://doi.org/10.1029/2010JD014986,
2011b.
a
Mielonen, T., Levy, R. C., Aaltonen, V., Komppula, M., de Leeuw, G., Huttunen, J., Lihavainen, H., Kolmonen, P., Lehtinen, K. E. J.,
and Arola, A.: Evaluating the assumptions of surface reflectance and aerosol type selection within the MODIS aerosol retrieval over
land: the problem of dust type selection, Atmos. Meas. Tech., 4, 201–214, https://doi.org/10.5194/amt-4-201-2011, 2011. a
Petrenko, M., Ichoku, C., and Leptoukh, G.: Multi-sensor Aerosol Products Sampling System (MAPSS), Atmos. Meas. Tech., 5, 913–926, https://doi.org/10.5194/amt-5-913-2012, 2012. a
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito,
K., and Thurston, G. D.: Lung cancer, cardiopulmonary mortality, and
long-term exposure to fine particulate air pollution, Jama, 287, 1132–1141,
2002. a
Remer, L. A., Wald, A. E., and Kaufman, Y. J.: Angular and seasonal variation
of spectral surface reflectance ratios: Implications for the remote sensing
of aerosol over land, IEEE T. Geosci. Remote, 39,
275–283, 2001. a
Seaton, A., Godden, D., MacNee, W., and Donaldson, K.: Particulate air
pollution and acute health effects, Lancet, 345, 176–178, 1995. a