Articles | Volume 11, issue 4
https://doi.org/10.5194/amt-11-2151-2018
https://doi.org/10.5194/amt-11-2151-2018
Research article
 | 
16 Apr 2018
Research article |  | 16 Apr 2018

Computational efficiency for the surface renewal method

Jason Kelley and Chad Higgins

Data sets

Demonstration data for computational efficiency in surface renewal analysis J. Kelley https://doi.org/10.7267/N9X34VDS

Model code and software

Demonstration data for computational efficiency in surface renewal analysis J. Kelley https://doi.org/10.7267/N9X34VDS

Download
Short summary
Measuring fluxes of energy and trace gases using the surface renewal (SR) method can be economical and robust, but it requires computationally intensive calculations. Several new algorithms were written to perform the required calculations more efficiently and rapidly, and were tested with field data and computationally rigorous SR methods. These efficient algorithms facilitate expanded use of SR in atmospheric experiments, for applied monitoring, and in novel field implementations.