Articles | Volume 11, issue 6
https://doi.org/10.5194/amt-11-3397-2018
https://doi.org/10.5194/amt-11-3397-2018
Research article
 | 
13 Jun 2018
Research article |  | 13 Jun 2018

The Community Cloud retrieval for CLimate (CC4CL) – Part 2: The optimal estimation approach

Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Gregory McGarragh on behalf of the Authors (24 Mar 2018)  Author's response   Manuscript 
ED: Publish as is (17 Apr 2018) by Alexander Kokhanovsky
AR by Gregory McGarragh on behalf of the Authors (28 Apr 2018)
Short summary
Satellites are vital for measuring cloud properties necessary for climate prediction studies. We present a method to retrieve cloud properties from satellite based radiometric measurements. The methodology employed is known as optimal estimation and belongs in the class of statistical inversion methods based on Bayes' theorem. We show, through theoretical retrieval simulations, that the solution is stable and accurate to within 10–20% depending on cloud thickness.