Articles | Volume 11, issue 6
https://doi.org/10.5194/amt-11-3397-2018
https://doi.org/10.5194/amt-11-3397-2018
Research article
 | 
13 Jun 2018
Research article |  | 13 Jun 2018

The Community Cloud retrieval for CLimate (CC4CL) – Part 2: The optimal estimation approach

Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger

Related authors

Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project
Martin Stengel, Stefan Stapelberg, Oliver Sus, Cornelia Schlundt, Caroline Poulsen, Gareth Thomas, Matthew Christensen, Cintia Carbajal Henken, Rene Preusker, Jürgen Fischer, Abhay Devasthale, Ulrika Willén, Karl-Göran Karlsson, Gregory R. McGarragh, Simon Proud, Adam C. Povey, Roy G. Grainger, Jan Fokke Meirink, Artem Feofilov, Ralf Bennartz, Jedrzej S. Bojanowski, and Rainer Hollmann
Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017,https://doi.org/10.5194/essd-9-881-2017, 2017
Short summary
Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate
Matthew W. Christensen, David Neubauer, Caroline A. Poulsen, Gareth E. Thomas, Gregory R. McGarragh, Adam C. Povey, Simon R. Proud, and Roy G. Grainger
Atmos. Chem. Phys., 17, 13151–13164, https://doi.org/10.5194/acp-17-13151-2017,https://doi.org/10.5194/acp-17-13151-2017, 2017
Short summary
Retrieval of ash properties from IASI measurements
Lucy J. Ventress, Gregory McGarragh, Elisa Carboni, Andrew J. Smith, and Roy G. Grainger
Atmos. Meas. Tech., 9, 5407–5422, https://doi.org/10.5194/amt-9-5407-2016,https://doi.org/10.5194/amt-9-5407-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024,https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024,https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024,https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
The algorithm of microphysical parameter profiles of aerosol and small cloud droplets based on the dual wavelength Lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
EGUsphere, https://doi.org/10.5194/egusphere-2024-192,https://doi.org/10.5194/egusphere-2024-192, 2024
Short summary

Cited articles

Arking, A. and Childs, J. D.: Retrieval of Cloud Cover Parameters from Multispectral Satellite Images, J. Atmos. Sci., 24, 322–333, https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2, 1985.
Arnott, W. P., Dong, Y., Hallett, J., and Poellot, M. R.: Role of Small Ice Crystals in Radiative Properties of Cirrus: A Casestudy, FIRE II, November 22, 1991, J. Geophys. Res., 99, 1371–1381, https://doi.org/10.1029/93JD02781, 1994.
Austin, R. T. and Stephens, G. L.: Retrieval of Stratus Cloud Microphysical Parameters Using Millimeter-Wave Radar and Visible Optical Depth in Preparation for CloudSat 1. Algorithm Formulation, J. Geophys. Res., 106, 28233–28242, https://doi.org/10.1029/2000JD000293, 2001.
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER Spectral Library Version 2.0, Remote Sens. Environ., 113, 711–715, https://doi.org/10.1016/j.rse.2008.11.007, 2009.
Baum, B. A., Yang, P., Hu, Y.-X., and Feng, Q.: The Impact of Ice Particle Roughness on the Scattering Phase Matrix, J. Quant. Spectrosc. Radiat. Transfer., 111, 2534–2549, https://doi.org/10.1016/j.jqsrt.2010.07.008, 2010.
Short summary
Satellites are vital for measuring cloud properties necessary for climate prediction studies. We present a method to retrieve cloud properties from satellite based radiometric measurements. The methodology employed is known as optimal estimation and belongs in the class of statistical inversion methods based on Bayes' theorem. We show, through theoretical retrieval simulations, that the solution is stable and accurate to within 10–20% depending on cloud thickness.