Articles | Volume 11, issue 6
https://doi.org/10.5194/amt-11-3397-2018
https://doi.org/10.5194/amt-11-3397-2018
Research article
 | 
13 Jun 2018
Research article |  | 13 Jun 2018

The Community Cloud retrieval for CLimate (CC4CL) – Part 2: The optimal estimation approach

Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger

Related authors

Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project
Martin Stengel, Stefan Stapelberg, Oliver Sus, Cornelia Schlundt, Caroline Poulsen, Gareth Thomas, Matthew Christensen, Cintia Carbajal Henken, Rene Preusker, Jürgen Fischer, Abhay Devasthale, Ulrika Willén, Karl-Göran Karlsson, Gregory R. McGarragh, Simon Proud, Adam C. Povey, Roy G. Grainger, Jan Fokke Meirink, Artem Feofilov, Ralf Bennartz, Jedrzej S. Bojanowski, and Rainer Hollmann
Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017,https://doi.org/10.5194/essd-9-881-2017, 2017
Short summary
Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate
Matthew W. Christensen, David Neubauer, Caroline A. Poulsen, Gareth E. Thomas, Gregory R. McGarragh, Adam C. Povey, Simon R. Proud, and Roy G. Grainger
Atmos. Chem. Phys., 17, 13151–13164, https://doi.org/10.5194/acp-17-13151-2017,https://doi.org/10.5194/acp-17-13151-2017, 2017
Short summary
Retrieval of ash properties from IASI measurements
Lucy J. Ventress, Gregory McGarragh, Elisa Carboni, Andrew J. Smith, and Roy G. Grainger
Atmos. Meas. Tech., 9, 5407–5422, https://doi.org/10.5194/amt-9-5407-2016,https://doi.org/10.5194/amt-9-5407-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary

Cited articles

Arking, A. and Childs, J. D.: Retrieval of Cloud Cover Parameters from Multispectral Satellite Images, J. Atmos. Sci., 24, 322–333, https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2, 1985.
Arnott, W. P., Dong, Y., Hallett, J., and Poellot, M. R.: Role of Small Ice Crystals in Radiative Properties of Cirrus: A Casestudy, FIRE II, November 22, 1991, J. Geophys. Res., 99, 1371–1381, https://doi.org/10.1029/93JD02781, 1994.
Austin, R. T. and Stephens, G. L.: Retrieval of Stratus Cloud Microphysical Parameters Using Millimeter-Wave Radar and Visible Optical Depth in Preparation for CloudSat 1. Algorithm Formulation, J. Geophys. Res., 106, 28233–28242, https://doi.org/10.1029/2000JD000293, 2001.
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER Spectral Library Version 2.0, Remote Sens. Environ., 113, 711–715, https://doi.org/10.1016/j.rse.2008.11.007, 2009.
Baum, B. A., Yang, P., Hu, Y.-X., and Feng, Q.: The Impact of Ice Particle Roughness on the Scattering Phase Matrix, J. Quant. Spectrosc. Radiat. Transfer., 111, 2534–2549, https://doi.org/10.1016/j.jqsrt.2010.07.008, 2010.
Short summary
Satellites are vital for measuring cloud properties necessary for climate prediction studies. We present a method to retrieve cloud properties from satellite based radiometric measurements. The methodology employed is known as optimal estimation and belongs in the class of statistical inversion methods based on Bayes' theorem. We show, through theoretical retrieval simulations, that the solution is stable and accurate to within 10–20% depending on cloud thickness.